Monotonicity of a mean related to polygamma functions with an application

被引:0
|
作者
Zhen-Hang Yang
Shen-Zhou Zheng
机构
[1] Beijing Jiaotong University,Department of Mathematics
[2] ZPEPC Electric Power Research Institute,Power Supply Service Center
关键词
Direct Consequence; Real Number; Gamma Function; Monotonic Function; Positive Function;
D O I
暂无
中图分类号
学科分类号
摘要
Let ψn=(−1)n−1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\psi_{n}= ( -1 ) ^{n-1}$\end{document}ψ(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\psi^{ ( n ) }$\end{document} (n=0,1,2,…\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$n=0,1,2,\ldots $\end{document}), where ψ(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\psi^{ ( n ) }$\end{document} denotes the psi and polygamma functions. We prove that for n≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$n\geq0$\end{document} and two different real numbers a and b, the function x↦ψn−1(∫abψn(x+t)dtb−a)−x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ x\mapsto\psi_{n}^{-1} \biggl( \frac{\int_{a}^{b}\psi_{n}(x+t)\,dt}{b-a} \biggr) -x $$\end{document} is strictly increasing from (−min(a,b),∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$( -\min ( a,b ) ,\infty ) $\end{document} onto (min(a,b),(a+b)/2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$( \min ( a,b ) , ( a+b ) /2 ) $\end{document}, which generalizes a well-known result. As an application, the complete monotonicity for a ratio of gamma functions is improved.
引用
收藏
相关论文
共 50 条
  • [1] Monotonicity of a mean related to polygamma functions with an application
    Yang, Zhen-Hang
    Zheng, Shen-Zhou
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2016,
  • [2] Completely monotonicity of class functions involving the polygamma and related functions
    Ravi, B.
    Lakshmi, A. Venakata
    [J]. ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2021, 14 (04)
  • [3] Monotonicity results for the polygamma functions
    Li, Al-Jun
    Yuan, Jun
    Chen, Chao-Ping
    [J]. MATHEMATICAL INEQUALITIES & APPLICATIONS, 2008, 11 (02): : 307 - 316
  • [4] Complete monotonicity related to the k-polygamma functions with applications
    Yin, Li
    Zhang, Jumei
    Lin, XiuLi
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2019, 2019 (01)
  • [5] Complete monotonicity related to the k-polygamma functions with applications
    Li Yin
    Jumei Zhang
    XiuLi Lin
    [J]. Advances in Difference Equations, 2019
  • [6] Complete monotonicity of some functions involving polygamma functions
    Qi, Feng
    Guo, Senlin
    Guo, Bai-Ni
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 233 (09) : 2149 - 2160
  • [7] MONOTONICITY RESULTS FOR FUNCTIONS INVOLVING THE q-POLYGAMMA FUNCTIONS
    Yang, Zhen-hang
    Tian, Jing-feng
    [J]. ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2024, 54 (04) : 1213 - 1229
  • [8] COMPLETE MONOTONICITY INVOLVING THE DIVIDED DIFFERENCE OF POLYGAMMA FUNCTIONS
    Yang, Zhen-Hang
    Tian, Jing-Feng
    [J]. APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2023, 17 (01) : 138 - 158
  • [9] Complete monotonicity and inequalities related to generalized k-gamma and k-polygamma functions
    Ju-Mei Zhang
    Li Yin
    Hong-Lian You
    [J]. Journal of Inequalities and Applications, 2020
  • [10] Complete monotonicity results for some functions involving the gamma and polygamma functions
    Sevli, Hamdullah
    Batir, Necdet
    [J]. MATHEMATICAL AND COMPUTER MODELLING, 2011, 53 (9-10) : 1771 - 1775