Monotonicity of a mean related to polygamma functions with an application

被引:11
|
作者
Yang, Zhen-Hang [1 ,2 ]
Zheng, Shen-Zhou [1 ]
机构
[1] Beijing Jiaotong Univ, Dept Math, Beijing 100044, Peoples R China
[2] ZPEPC Elect Power Res Inst, Power Supply Serv Ctr, Hangzhou 310009, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
DOUBLE INEQUALITY; GAMMA-FUNCTION; EXTENSIONS; DIGAMMA;
D O I
10.1186/s13660-016-1155-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let psi(n) = (-1)(n-1) psi((n)) (n = 0, 1, 2, ...), where psi((n)) denotes the psi and polygamma functions. We prove that for n >= 0 and two different real numbers a and b, the function X bar right arrow psi(-1)(n) (integral(b)(a) psi(n) (X + t)dt/b - a) - x is strictly increasing from (-min(a, b),infinity) onto (min(a, b), (a + b)/2), which generalizes a well-known result. As an application, the complete monotonicity for a ratio of gamma functions is improved.
引用
收藏
页数:10
相关论文
共 50 条