COMPLETE MONOTONICITY INVOLVING THE DIVIDED DIFFERENCE OF POLYGAMMA FUNCTIONS

被引:1
|
作者
Yang, Zhen-Hang [1 ]
Tian, Jing-Feng [2 ]
机构
[1] State Grid Zhejiang Elect Power Co Res Inst, Dept Sci & Technol, Hangzhou, Peoples R China
[2] North China Elect Power Univ, Dept Math & Phys, Baoding, Peoples R China
关键词
and Phrases; Polygamma functions; Divided difference; Majorization; Complete monotonicity; SHARP INEQUALITIES; GAMMA FUNCTION; DIGAMMA;
D O I
10.2298/AADM210630007Y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For r, s is an element of R and rho= min {r, s}, let D [x r, x s; psi n-1] equivalent to -phi n(x) be the divided difference of the functions psi n-1 = (-1)n psi(n-1) (n is an element of N) on (-rho, infinity), where psi(n) stands for the polygamma functions. In this paper, we present the necessary and sufficient conditions for the functions x 7 -> x 7 -> pi k i=1 pi k i=1 phi mi (x) - lambda k pi k i=1 phi ni (x) , phi ni (x) - mu k phi snk (x) to be completely monotonic on (-rho, infinity), where mi, ni is an element of N for i = 1, .., k with k >= 2 and snk = sigma ki=1 ni. These generalize known results and gives an answer to a problem.
引用
收藏
页码:138 / 158
页数:21
相关论文
共 50 条
  • [1] Complete monotonicity of some functions involving polygamma functions
    Qi, Feng
    Guo, Senlin
    Guo, Bai-Ni
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 233 (09) : 2149 - 2160
  • [2] COMPLETE MONOTONICITY OF A FUNCTION INVOLVING THE DIVIDED DIFFERENCE OF PSI FUNCTIONS
    Qi, Feng
    Cerone, Pietro
    Dragomir, Sever S.
    [J]. BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2013, 88 (02) : 309 - 319
  • [3] Complete monotonicity of a function involving the divided difference of digamma functions
    Qi Feng
    Luo QiuMing
    Guo BaiNi
    [J]. SCIENCE CHINA-MATHEMATICS, 2013, 56 (11) : 2315 - 2325
  • [4] Complete monotonicity of a function involving the divided difference of digamma functions
    Feng Qi
    QiuMing Luo
    BaiNi Guo
    [J]. Science China Mathematics, 2013, 56 : 2315 - 2325
  • [5] Complete monotonicity results for some functions involving the gamma and polygamma functions
    Sevli, Hamdullah
    Batir, Necdet
    [J]. MATHEMATICAL AND COMPUTER MODELLING, 2011, 53 (9-10) : 1771 - 1775
  • [6] Complete monotonicity of a function involving the divided diference of digamma functions
    QI Feng
    LUO QiuMing
    GUO BaiNi
    [J]. Science China Mathematics, 2013, 56 (11) : 2315 - 2325
  • [7] Completely monotonicity of class functions involving the polygamma and related functions
    Ravi, B.
    Lakshmi, A. Venakata
    [J]. ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2021, 14 (04)
  • [8] MONOTONICITY RESULTS FOR FUNCTIONS INVOLVING THE q-POLYGAMMA FUNCTIONS
    Yang, Zhen-hang
    Tian, Jing-feng
    [J]. ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2024, 54 (04) : 1213 - 1229
  • [9] Complete Monotonicity and Inequalities Involving the k-Gamma and k-Polygamma Functions
    Zhang, Ju-Mei
    Yin, Li
    You, Hong-Lian
    [J]. MATHEMATICA SLOVACA, 2023, 73 (05) : 1217 - 1230
  • [10] New properties of the divided difference of psi and polygamma functions
    Jing-Feng Tian
    Zhen-Hang Yang
    [J]. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2021, 115