Quantization of Holonomic Systems Using WKB Approximation

被引:0
|
作者
M. Serhan
M. Abusini
Eqab M. Rabei
机构
[1] Al al-Bayt University,Department of Physics
关键词
Hamilton-Jacobi formulation; Constrained systems; WKB appraximation; Holonomic systems;
D O I
暂无
中图分类号
学科分类号
摘要
The Lagrange multipliers for holonomic systems are introduced as generalized coordinates, then, the system is enlarged to be singular system. The Hamilton-Jacobi function is obtained. This function is used to determine the solution of the equations of motion for holonomic systems and to quantize these systems using the WKB approximation. Two examples are considered to demonstrate the application of our formalism. The solution of the two examples are found to be in exact agreement with the Euler-Lagrange equations.
引用
收藏
页码:2731 / 2739
页数:8
相关论文
共 50 条
  • [21] Modified WKB approximation
    Bronzan, J.B.
    [J]. Physical Review A. Atomic, Molecular, and Optical Physics, 1996, 54 (01):
  • [22] Quasilinear Approximation and WKB
    R. Krivec
    V. B. Mandelzweig
    F. Tabakin
    [J]. Few-Body Systems, 2004, 34 : 57 - 62
  • [23] ON THE THEORY OF WKB APPROXIMATION
    LYUBARSKY, GY
    [J]. DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA A-FIZIKO-MATEMATICHNI TA TECHNICHNI NAUKI, 1980, (09): : 70 - 73
  • [24] ON THE VALIDITY OF THE WKB APPROXIMATION
    BURDICK, M
    SCHMIDT, HJ
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1994, 27 (02): : 579 - 592
  • [25] Fractional WKB approximation
    Rabei, Eqab M.
    Altarazi, Ibrahim M. A.
    Muslih, Sami I.
    Baleanu, Dumitru
    [J]. NONLINEAR DYNAMICS, 2009, 57 (1-2) : 171 - 175
  • [26] Fractional WKB approximation
    Eqab M. Rabei
    Ibrahim M. A. Altarazi
    Sami I. Muslih
    Dumitru Baleanu
    [J]. Nonlinear Dynamics, 2009, 57 : 171 - 175
  • [27] Quasilinear approximation and WKB
    Krivec, R
    Mandelzweig, VB
    Tabakin, F
    [J]. FEW-BODY SYSTEMS, 2004, 34 (1-3) : 57 - 62
  • [28] WKB APPROXIMATION AND SCALING
    BANERJEE, K
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1978, 363 (1712): : 147 - 151
  • [29] Modified WKB approximation
    Bronzan, JB
    [J]. PHYSICAL REVIEW A, 1996, 54 (01) : 41 - 51
  • [30] DECHANNELING IN THE WKB APPROXIMATION
    VISINESCU, A
    CORCIOVEI, A
    [J]. REVUE ROUMAINE DE PHYSIQUE, 1979, 24 (09): : 921 - 929