Quasilinear Approximation and WKB

被引:0
|
作者
R. Krivec
V. B. Mandelzweig
F. Tabakin
机构
[1] J. Stefan Institute,Department of Physics and Astronomy
[2] Racah Institute of Physics,undefined
[3] The Hebrew University,undefined
[4] University of Pittsburgh,undefined
来源
Few-Body Systems | 2004年 / 34卷
关键词
Quantum System; Smallness Parameter; Nonlinear Term; Riccati Equation; Stable Quantum;
D O I
暂无
中图分类号
学科分类号
摘要
Quasilinear solutions of the radial Schrödinger equation for different potentials are compared with corresponding WKB solutions. For this study, the Schrödinger equation is first cast into a nonlinear Riccati form. While the WKB method generates an expansion in powers of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\hbar$\end{document}, the quasi-linearization method (QLM) approaches the solution of the Riccati equation by approximating its nonlinear terms by a sequence of linear iterates. Although iterative, the QLM is not perturbative and does not rely on the existence of any kind of smallness parameters. If the initial QLM guess is properly chosen, the usual QLM solution, unlike the WKB, displays no unphysical turning-point singularities. The first QLM iteration is given by an analytic expression. This allows one to estimate analytically the role of different parameters, and the influence of their variation on the boundedness or unboundedness of a critically stable quantum system, with much more precision than provided by the WKB approximation, which often fails miserably for systems on the border of stability. It is therefore demonstrated that the QLM method is preferable over the usual WKB method.
引用
下载
收藏
页码:57 / 62
页数:5
相关论文
共 50 条
  • [1] Quasilinear approximation and WKB
    Krivec, R
    Mandelzweig, VB
    Tabakin, F
    FEW-BODY SYSTEMS, 2004, 34 (1-3) : 57 - 62
  • [2] Comparison of quasilinear and WKB approximations
    Mandelzweig, V. B.
    ANNALS OF PHYSICS, 2006, 321 (12) : 2810 - 2829
  • [3] Quasilinear and WKB solutions in quantum mechanics
    Krivec, R.
    Mandelzaweig, V. B.
    Tabakin, F.
    Few-Body Problems in Physics, 2005, 2007, : 24 - 27
  • [4] Modified WKB approximation
    Bronzan, J.B.
    Physical Review A. Atomic, Molecular, and Optical Physics, 1996, 54 (01):
  • [5] ON THE THEORY OF WKB APPROXIMATION
    LYUBARSKY, GY
    DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA A-FIZIKO-MATEMATICHNI TA TECHNICHNI NAUKI, 1980, (09): : 70 - 73
  • [6] Fractional WKB approximation
    Rabei, Eqab M.
    Altarazi, Ibrahim M. A.
    Muslih, Sami I.
    Baleanu, Dumitru
    NONLINEAR DYNAMICS, 2009, 57 (1-2) : 171 - 175
  • [7] Fractional WKB approximation
    Eqab M. Rabei
    Ibrahim M. A. Altarazi
    Sami I. Muslih
    Dumitru Baleanu
    Nonlinear Dynamics, 2009, 57 : 171 - 175
  • [8] ON THE VALIDITY OF THE WKB APPROXIMATION
    BURDICK, M
    SCHMIDT, HJ
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1994, 27 (02): : 579 - 592
  • [9] DECHANNELING IN THE WKB APPROXIMATION
    VISINESCU, A
    CORCIOVEI, A
    REVUE ROUMAINE DE PHYSIQUE, 1979, 24 (09): : 921 - 929
  • [10] Modified WKB approximation
    Bronzan, JB
    PHYSICAL REVIEW A, 1996, 54 (01) : 41 - 51