On the Forcing Domination and the Forcing Total Domination Numbers of a Graph

被引:0
|
作者
J. John
V. Sujin Flower
机构
[1] Government College of Engineering,Department of Mathematics
[2] Holy Cross College (Autonomous),Department of Mathematics
来源
Graphs and Combinatorics | 2022年 / 38卷
关键词
Domination number; Total domination number; Forcing domination number; Forcing total domination number; 05C69;
D O I
暂无
中图分类号
学科分类号
摘要
Let G be a connected graph with at least two vertices and S a γt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _{t}$$\end{document}-set of G. A subset T⊆S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T \subseteq S$$\end{document} is called a forcing subset for S if S is the unique γt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _{t}$$\end{document}-set containing T. The forcing total domination number of S, denoted by fγt(S)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_{\gamma _{t}}(S)$$\end{document}, is the cardinality of a minimum forcing subset of S. The forcing total domination number of G, denoted by fγt(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_{\gamma _{t}}(G)$$\end{document} is defined by fγt(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_{\gamma _{t}}(G)$$\end{document} = min {fγt(S)}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lbrace f_{\gamma _{t}}(S)\rbrace$$\end{document}, where the minimum is taken over all minimum total dominating sets S in G. Some general properties satisfied by this concepts are studied. The forcing total dominating number of certain standard graphs are determined. It is shown that for every pair a, b of integers with 0≤a<b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0 \le a < b$$\end{document} and b≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b \ge 1$$\end{document}, there exists a connected graph G such that fγt(G)=a\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_{\gamma _{t}}(G) = a$$\end{document} and γt(G)=b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _{t}(G) = b$$\end{document}, where γt(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _{t}(G)$$\end{document} is total domination number of G. It is also shown that for every pair a,b of integers with a≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a \ge 0$$\end{document} and b≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b \ge 0$$\end{document}, there exists a connected graph G such that fγt(G)=a\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_{{\gamma }_{t}}(G) = a$$\end{document} and fγ(G)=b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_{\gamma }(G) = b$$\end{document}, where fγ(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_{\gamma }(G)$$\end{document} is the forcing domination number of G.
引用
收藏
相关论文
共 50 条
  • [21] On graphs with equal total domination and Grundy total domination numbers
    Tanja Dravec
    Marko Jakovac
    Tim Kos
    Tilen Marc
    [J]. Aequationes mathematicae, 2022, 96 : 137 - 146
  • [22] On domination numbers of graph bundles
    Zmazek B.
    Žerovnik J.
    [J]. J. Appl. Math. Comp., 2006, 1-2 (39-48): : 39 - 48
  • [23] Zero forcing versus domination in cubic graphs
    Davila, Randy
    Henning, Michael A.
    [J]. JOURNAL OF COMBINATORIAL OPTIMIZATION, 2021, 41 (02) : 553 - 577
  • [24] Restricted power domination and zero forcing problems
    Chassidy Bozeman
    Boris Brimkov
    Craig Erickson
    Daniela Ferrero
    Mary Flagg
    Leslie Hogben
    [J]. Journal of Combinatorial Optimization, 2019, 37 : 935 - 956
  • [25] Restricted power domination and zero forcing problems
    Bozeman, Chassidy
    Brimkov, Boris
    Erickson, Craig
    Ferrero, Daniela
    Flagg, Mary
    Hogben, Leslie
    [J]. JOURNAL OF COMBINATORIAL OPTIMIZATION, 2019, 37 (03) : 935 - 956
  • [26] A characterization of trees with equal domination and total domination numbers
    Hou, Xinmin
    [J]. ARS COMBINATORIA, 2010, 97A : 499 - 508
  • [27] Grundy domination and zero forcing in Kneser graphs
    Bresar, Bostjan
    Kos, Tim
    Daniel Tones, Pablo
    [J]. ARS MATHEMATICA CONTEMPORANEA, 2019, 17 (02) : 419 - 430
  • [28] On graphs with equal total domination and connected domination numbers
    Chen, XG
    [J]. APPLIED MATHEMATICS LETTERS, 2006, 19 (05) : 472 - 477
  • [29] 2-Domination Zero Forcing in Graphs
    Hassan, Javier A.
    Laja, Ladznar S.
    Copel, Hounam B.
    [J]. INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, 2024, 19 (04): : 1065 - 1070
  • [30] Grundy Domination and Zero Forcing in Regular Graphs
    Bresar, Bostjan
    Brezovnik, Simon
    [J]. BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2021, 44 (06) : 3637 - 3661