Grundy Domination and Zero Forcing in Regular Graphs

被引:2
|
作者
Bresar, Bostjan [1 ,2 ]
Brezovnik, Simon [1 ,3 ]
机构
[1] Univ Maribor, Fac Nat Sci & Math, Maribor, Slovenia
[2] Inst Math Phys & Mech, Ljubljana, Slovenia
[3] Univ Maribor, Fac Educ, Maribor, Slovenia
关键词
Grundy domination number; Zero forcing; Regular graph; Cubic graph; SEQUENCES; NUMBER; BOUNDS;
D O I
10.1007/s40840-021-01134-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a finite graph G, the maximum length of a sequence (v(1), ..., v(k)) of vertices in G such that each v(i) dominates a vertex that is not dominated by any vertex in {v(1), ..., v(i-1)} is called the Grundy domination number, gamma(gr)(G), of G. A small modification of the definition yields the Z-Grundy domination number, which is the dual invariant of the well-known zero forcing number. In this paper, we prove that gamma(gr)(G) >= n+inverted right perpendiculark/2inverted left perpendicular-2/k-1 holds for every connected k-regular graph of order n different from Kk+1 and (2C(4)) over bar. The bound in the case k = 3 reduces to gamma(gr)(G) >= n/2, and we characterize the connected cubic graphs with gamma(gr)(G) = n/2. If G is different from K-4 and K-3,K-3, then n/2 is also an upper bound for the zero forcing number of a connected cubic graph, and we characterize the connected cubic graphs attaining this bound.
引用
收藏
页码:3637 / 3661
页数:25
相关论文
共 50 条
  • [1] Grundy Domination and Zero Forcing in Regular Graphs
    Boštjan Brešar
    Simon Brezovnik
    [J]. Bulletin of the Malaysian Mathematical Sciences Society, 2021, 44 : 3637 - 3661
  • [2] Grundy domination and zero forcing in Kneser graphs
    Bresar, Bostjan
    Kos, Tim
    Daniel Tones, Pablo
    [J]. ARS MATHEMATICA CONTEMPORANEA, 2019, 17 (02) : 419 - 430
  • [3] Loop Zero Forcing and Grundy Domination in Planar Graphs and Claw-Free Cubic Graphs
    Domat, Alex
    Kuenzel, Kirsti
    [J]. BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2024, 47 (04)
  • [4] Zero forcing number, Grundy domination number, and their variants
    Lin, Jephian C. -H.
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2019, 563 : 240 - 254
  • [5] Zero forcing versus domination in cubic graphs
    Davila, Randy
    Henning, Michael A.
    [J]. JOURNAL OF COMBINATORIAL OPTIMIZATION, 2021, 41 (02) : 553 - 577
  • [6] 2-Domination Zero Forcing in Graphs
    Hassan, Javier A.
    Laja, Ladznar S.
    Copel, Hounam B.
    [J]. INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, 2024, 19 (04): : 1065 - 1070
  • [7] Zero forcing versus domination in cubic graphs
    Randy Davila
    Michael A. Henning
    [J]. Journal of Combinatorial Optimization, 2021, 41 : 553 - 577
  • [8] Grundy Hop Domination in Graphs
    Hassan, Javier A.
    Canoy, Sergio R., Jr.
    [J]. EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2022, 15 (04): : 1623 - 1636
  • [9] Zero-forcing in random regular graphs
    Bal, Deepak
    Bennett, Patrick
    English, Sean
    MacRury, Calum
    Pralat, Pawel
    [J]. JOURNAL OF COMBINATORICS, 2021, 12 (01) : 85 - 116
  • [10] On graphs with equal total domination and Grundy total domination numbers
    Dravec, Tanja
    Jakovac, Marko
    Kos, Tim
    Marc, Tilen
    [J]. AEQUATIONES MATHEMATICAE, 2022, 96 (01) : 137 - 146