Grundy Domination and Zero Forcing in Regular Graphs

被引:0
|
作者
Boštjan Brešar
Simon Brezovnik
机构
[1] University of Maribor,Faculty of Natural Sciences and Mathematics
[2] Institute of Mathematics,Faculty of Education
[3] Physics and Mechanics,undefined
[4] University of Maribor,undefined
关键词
Grundy domination number; Zero forcing; Regular graph; Cubic graph; 05C69; 05C35;
D O I
暂无
中图分类号
学科分类号
摘要
Given a finite graph G, the maximum length of a sequence (v1,…,vk)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(v_1,\ldots ,v_k)$$\end{document} of vertices in G such that each vi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v_i$$\end{document} dominates a vertex that is not dominated by any vertex in {v1,…,vi-1}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{v_1,\ldots ,v_{i-1}\}$$\end{document} is called the Grundy domination number, γgr(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _\mathrm{gr}(G)$$\end{document}, of G. A small modification of the definition yields the Z-Grundy domination number, which is the dual invariant of the well-known zero forcing number. In this paper, we prove that γgr(G)≥n+⌈k2⌉-2k-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _\mathrm{gr}(G) \ge \frac{n + \lceil \frac{k}{2} \rceil - 2}{k-1}$$\end{document} holds for every connected k-regular graph of order n different from Kk+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{k+1}$$\end{document} and 2C4¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{2C_4}$$\end{document}. The bound in the case k=3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k=3$$\end{document} reduces to γgr(G)≥n2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _\mathrm{gr}(G)\ge \frac{n}{2}$$\end{document}, and we characterize the connected cubic graphs with γgr(G)=n2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _\mathrm{gr}(G)=\frac{n}{2}$$\end{document}. If G is different from K4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_4$$\end{document} and K3,3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{3,3}$$\end{document}, then n2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{n}{2}$$\end{document} is also an upper bound for the zero forcing number of a connected cubic graph, and we characterize the connected cubic graphs attaining this bound.
引用
收藏
页码:3637 / 3661
页数:24
相关论文
共 50 条
  • [1] Grundy Domination and Zero Forcing in Regular Graphs
    Bresar, Bostjan
    Brezovnik, Simon
    [J]. BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2021, 44 (06) : 3637 - 3661
  • [2] Grundy domination and zero forcing in Kneser graphs
    Bresar, Bostjan
    Kos, Tim
    Daniel Tones, Pablo
    [J]. ARS MATHEMATICA CONTEMPORANEA, 2019, 17 (02) : 419 - 430
  • [3] Loop Zero Forcing and Grundy Domination in Planar Graphs and Claw-Free Cubic Graphs
    Domat, Alex
    Kuenzel, Kirsti
    [J]. BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2024, 47 (04)
  • [4] Zero forcing number, Grundy domination number, and their variants
    Lin, Jephian C. -H.
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2019, 563 : 240 - 254
  • [5] Zero forcing versus domination in cubic graphs
    Davila, Randy
    Henning, Michael A.
    [J]. JOURNAL OF COMBINATORIAL OPTIMIZATION, 2021, 41 (02) : 553 - 577
  • [6] 2-Domination Zero Forcing in Graphs
    Hassan, Javier A.
    Laja, Ladznar S.
    Copel, Hounam B.
    [J]. INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, 2024, 19 (04): : 1065 - 1070
  • [7] Zero forcing versus domination in cubic graphs
    Randy Davila
    Michael A. Henning
    [J]. Journal of Combinatorial Optimization, 2021, 41 : 553 - 577
  • [8] Grundy Hop Domination in Graphs
    Hassan, Javier A.
    Canoy, Sergio R., Jr.
    [J]. EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2022, 15 (04): : 1623 - 1636
  • [9] Zero-forcing in random regular graphs
    Bal, Deepak
    Bennett, Patrick
    English, Sean
    MacRury, Calum
    Pralat, Pawel
    [J]. JOURNAL OF COMBINATORICS, 2021, 12 (01) : 85 - 116
  • [10] On graphs with equal total domination and Grundy total domination numbers
    Dravec, Tanja
    Jakovac, Marko
    Kos, Tim
    Marc, Tilen
    [J]. AEQUATIONES MATHEMATICAE, 2022, 96 (01) : 137 - 146