Grundy Domination and Zero Forcing in Regular Graphs

被引:0
|
作者
Boštjan Brešar
Simon Brezovnik
机构
[1] University of Maribor,Faculty of Natural Sciences and Mathematics
[2] Institute of Mathematics,Faculty of Education
[3] Physics and Mechanics,undefined
[4] University of Maribor,undefined
关键词
Grundy domination number; Zero forcing; Regular graph; Cubic graph; 05C69; 05C35;
D O I
暂无
中图分类号
学科分类号
摘要
Given a finite graph G, the maximum length of a sequence (v1,…,vk)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(v_1,\ldots ,v_k)$$\end{document} of vertices in G such that each vi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v_i$$\end{document} dominates a vertex that is not dominated by any vertex in {v1,…,vi-1}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{v_1,\ldots ,v_{i-1}\}$$\end{document} is called the Grundy domination number, γgr(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _\mathrm{gr}(G)$$\end{document}, of G. A small modification of the definition yields the Z-Grundy domination number, which is the dual invariant of the well-known zero forcing number. In this paper, we prove that γgr(G)≥n+⌈k2⌉-2k-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _\mathrm{gr}(G) \ge \frac{n + \lceil \frac{k}{2} \rceil - 2}{k-1}$$\end{document} holds for every connected k-regular graph of order n different from Kk+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{k+1}$$\end{document} and 2C4¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{2C_4}$$\end{document}. The bound in the case k=3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k=3$$\end{document} reduces to γgr(G)≥n2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _\mathrm{gr}(G)\ge \frac{n}{2}$$\end{document}, and we characterize the connected cubic graphs with γgr(G)=n2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _\mathrm{gr}(G)=\frac{n}{2}$$\end{document}. If G is different from K4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_4$$\end{document} and K3,3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{3,3}$$\end{document}, then n2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{n}{2}$$\end{document} is also an upper bound for the zero forcing number of a connected cubic graph, and we characterize the connected cubic graphs attaining this bound.
引用
收藏
页码:3637 / 3661
页数:24
相关论文
共 50 条
  • [21] Roman domination in regular graphs
    Fu Xueliang
    Yang Yuansheng
    Jiang Baoqi
    DISCRETE MATHEMATICS, 2009, 309 (06) : 1528 - 1537
  • [22] Connected domination of regular graphs
    Duckworth, W.
    Mans, B.
    DISCRETE MATHEMATICS, 2009, 309 (08) : 2305 - 2322
  • [23] Signed domination in regular graphs
    Favaron, O
    DISCRETE MATHEMATICS, 1996, 158 (1-3) : 287 - 293
  • [24] Roman domination in regular graphs
    Department of Computer Science, Dalian University of Technology, Dalian, 116024, China
    不详
    Discrete Math, 1600, 6 (1528-1537):
  • [25] Minus domination in regular graphs
    Dunbar, J
    Hedetniemi, S
    Henning, MA
    McRae, AA
    DISCRETE MATHEMATICS, 1996, 149 (1-3) : 311 - 312
  • [26] INDEPENDENT DOMINATION IN REGULAR GRAPHS
    HAVILAND, J
    DISCRETE MATHEMATICS, 1995, 143 (1-3) : 275 - 280
  • [27] Regular set domination in graphs
    Kulli, V. R.
    Janakiram, B.
    NATIONAL ACADEMY SCIENCE LETTERS-INDIA, 2009, 32 (11-12): : 351 - 355
  • [28] Total Domination in Regular Graphs
    Hoppen, Carlos
    Mansan, Giovane
    ELECTRONIC NOTES IN THEORETICAL COMPUTER SCIENCE, 2019, 346 : 523 - 533
  • [29] Domination graphs of regular tournaments
    Cho, HH
    Kim, SR
    Lundgren, JR
    DISCRETE MATHEMATICS, 2002, 252 (1-3) : 57 - 71
  • [30] FORCING SIGNED DOMINATION NUMBERS IN GRAPHS
    Sheikholeslami, S. M.
    MATEMATICKI VESNIK, 2007, 59 (04): : 171 - 179