Probability distributions for the run-and-tumble bacterial dynamics: An analogy to the Lorentz model

被引:0
|
作者
K. Martens
L. Angelani
R. Di Leonardo
L. Bocquet
机构
[1] LPMCN,CNR
[2] Université Lyon 1 and UMR CNRS 5586,IPCF UOS Roma, Dipartimento di Fisica
[3] Università Sapienza,undefined
来源
关键词
Regular Article - Topical issue: Active Matter;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we exploit an analogy of the run-and-tumble process for bacterial motility with the Lorentz model of electron conduction in order to obtain analytical results for the intermediate scattering function. This allows to obtain an analytical result for the van Hove function in real space for two-dimensional systems. We furthermore consider the 2D circling motion of bacteria close to solid boundaries with tumbling, and show that the analogy to electron conduction in a magnetic field allows to predict the effective diffusion coefficient of the bacteria. The latter is shown to be reduced by the circling motion of the bacteria. [graphic not available: see fulltext]
引用
收藏
相关论文
共 37 条
  • [1] Probability distributions for the run-and-tumble bacterial dynamics: An analogy to the Lorentz model
    Martens, K.
    Angelani, L.
    Di Leonardo, R.
    Bocquet, L.
    [J]. EUROPEAN PHYSICAL JOURNAL E, 2012, 35 (09):
  • [2] Kuramoto model with run-and-tumble dynamics
    Frydel, Derek
    [J]. PHYSICAL REVIEW E, 2021, 104 (02)
  • [3] A computational model for bacterial run-and-tumble motion
    Lee, Miru
    Szuttor, Kai
    Holm, Christian
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2019, 150 (17):
  • [4] Probability distributions for the run-and-tumble models with variable speed and tumbling rate
    Angelani, Luca
    Garra, Roberto
    [J]. MODERN STOCHASTICS-THEORY AND APPLICATIONS, 2019, 6 (01): : 3 - 12
  • [5] Stationary superstatistics distributions of trapped run-and-tumble particles
    Sevilla, Francisco J.
    Arzola, Alejandro, V
    Cital, Enrique Puga
    [J]. PHYSICAL REVIEW E, 2019, 99 (01)
  • [6] Survival probability of a run-and-tumble particle in the presence of a drift
    De Bruyne, Benjamin
    Majumdar, Satya N.
    Schehr, Gregory
    [J]. JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2021, 2021 (04):
  • [7] Run-and-tumble oscillator: Moment analysis of stationary distributions
    Frydel, Derek
    [J]. PHYSICS OF FLUIDS, 2023, 35 (10)
  • [8] Effective run-and-tumble dynamics of bacteria baths
    Paoluzzi, M.
    Di Leonardo, R.
    Angelani, L.
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2013, 25 (41)
  • [9] Transient Anomalous Diffusion in Run-and-Tumble Dynamics
    Shaebani, M. Reza
    Rieger, Heiko
    [J]. FRONTIERS IN PHYSICS, 2019, 7
  • [10] Characterization and Control of the Run-and-Tumble Dynamics of Escherichia Coli
    Kurzthaler, Christina
    Zhao, Yongfeng
    Zhou, Nan
    Schwarz-Linek, Jana
    Devailly, Clemence
    Arlt, Jochen
    Huang, Jian-Dong
    Poon, Wilson C. K.
    Franosch, Thomas
    Tailleur, Julien
    Martinez, Vincent A.
    [J]. PHYSICAL REVIEW LETTERS, 2024, 132 (03)