Transient Anomalous Diffusion in Run-and-Tumble Dynamics

被引:18
|
作者
Shaebani, M. Reza [1 ]
Rieger, Heiko [1 ]
机构
[1] Saarland Univ, Ctr Biophys, Dept Theoret Phys, Saarbrucken, Germany
来源
FRONTIERS IN PHYSICS | 2019年 / 7卷
关键词
anomalous diffusion; run-and-tumble; persistent random walk; active motion; transient dynamics; CELL-MIGRATION; BINDING; PROCESSIVITY; TRANSPORT; DRIVEN; SEARCH; MODELS;
D O I
10.3389/fphy.2019.00120
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the stochastic dynamics of a particle with two distinct motility states. Each one is characterized by two parameters: one represents the average speed and the other represents the persistence quantifying the tendency to maintain the current direction of motion. We consider a run-and-tumble process, which is a combination of an active fast motility mode (persistent motion) and a passive slow mode (diffusion). Assuming stochastic transitions between the two motility states, we derive an analytical expression for the time evolution of the mean square displacement. The interplay of the key parameters and the initial conditions as for instance the probability of initially starting in the run or tumble state leads to a variety of transient regimes of anomalous transport on different time scales before approaching the asymptotic diffusive dynamics. We estimate the crossover time to the long-term diffusive regime and prove that the asymptotic diffusion constant is independent of initially starting in the run or tumble state.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Anomalous diffusion in run-and-tumble motion
    Thiel, Felix
    Schimansky-Geier, Lutz
    Sokolov, Igor M.
    [J]. PHYSICAL REVIEW E, 2012, 86 (02):
  • [2] Kuramoto model with run-and-tumble dynamics
    Frydel, Derek
    [J]. PHYSICAL REVIEW E, 2021, 104 (02)
  • [3] Non-Gaussian anomalous dynamics in systems of interacting run-and-tumble particles
    Put, Stefanie
    Berx, Jonas
    Vanderzande, Carlo
    [J]. JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2019, 2019 (12):
  • [4] Effective run-and-tumble dynamics of bacteria baths
    Paoluzzi, M.
    Di Leonardo, R.
    Angelani, L.
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2013, 25 (41)
  • [5] A comparison of dynamical fluctuations of biased diffusion and run-and-tumble dynamics in one dimension
    Mallmin, Emil
    Blythe, Richard A.
    Evans, Martin R.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2019, 52 (42)
  • [6] Optimized Diffusion of Run-and-Tumble Particles in Crowded Environments
    Bertrand, Thibault
    Zhao, Yongfeng
    Benichou, Olivier
    Tailleur, Julien
    Voituriez, Raphael
    [J]. PHYSICAL REVIEW LETTERS, 2018, 120 (19)
  • [7] Characterization and Control of the Run-and-Tumble Dynamics of Escherichia Coli
    Kurzthaler, Christina
    Zhao, Yongfeng
    Zhou, Nan
    Schwarz-Linek, Jana
    Devailly, Clemence
    Arlt, Jochen
    Huang, Jian-Dong
    Poon, Wilson C. K.
    Franosch, Thomas
    Tailleur, Julien
    Martinez, Vincent A.
    [J]. PHYSICAL REVIEW LETTERS, 2024, 132 (03)
  • [8] Run-and-Tumble Dynamics and Mechanotaxis Discovered in Microglial Migration
    Zhang, Yiyu
    Wei, Da
    Wang, Xiaochen
    Wang, Boyi
    Li, Ming
    Fang, Haiping
    Peng, Yi
    Fan, Qihui
    Ye, Fangfu
    [J]. RESEARCH, 2023, 6
  • [9] Averaged run-and-tumble walks
    Angelani, L.
    [J]. EPL, 2013, 102 (02)
  • [10] Orthogonal run-and-tumble walks
    Angelani, Luca
    [J]. JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2022, 2022 (12):