Orthogonal run-and-tumble walks

被引:2
|
作者
Angelani, Luca [1 ,2 ]
机构
[1] ISC CNR, Inst Complex Syst, Ple A Moro 2, I-00185 Rome, Italy
[2] Sapienza Univ Roma, Dipartimento Fis, Ple A Moro 2, I-00185 Rome, Italy
来源
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT | 2022年 / 2022卷 / 12期
关键词
run-and-tumble motion; active particles; stochastic processes; persistent random walks; diffusion;
D O I
10.1088/1742-5468/aca588
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Planar run-and-tumble walks with orthogonal directions of motion are considered. After formulating the problem with generic transition probabilities among the orientational states, we focus on the symmetric case, giving general expressions of the probability distribution function (in the Laplace-Fourier domain), the mean-square displacement and the effective diffusion constant in terms of transition rate parameters. As case studies we treat and discuss two classes of motion, alternate/forward and isotropic/backward, obtaining, when possible, analytic expressions of probability distribution functions in the space-time domain. We discuss at the end also the case of cyclic motion. Reduced (enhanced) effective diffusivity, with respect to the standard 2D active motion, is observed in the cyclic and backward (forward) cases.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Averaged run-and-tumble walks
    Angelani, L.
    EPL, 2013, 102 (02)
  • [2] Optimal search strategies of run-and-tumble walks
    Rupprecht, Jean-Francois
    Benichou, Olivier
    Voituriez, Raphael
    PHYSICAL REVIEW E, 2016, 94 (01)
  • [3] Phase transitions in persistent and run-and-tumble walks
    Proesmans, Karel
    Toral, Raul
    Van den Broeck, Christian
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2020, 552
  • [4] Run-and-tumble particle with saturating rates
    Jain, Kavita
    Chatterjee, Sakuntala
    PHYSICAL REVIEW E, 2024, 110 (06)
  • [5] Run-and-tumble motion of ellipsoidal microswimmers
    Anchutkin, Gordei
    Cichos, Frank
    Holubec, Viktor
    PHYSICAL REVIEW RESEARCH, 2024, 6 (04):
  • [6] Anomalous diffusion in run-and-tumble motion
    Thiel, Felix
    Schimansky-Geier, Lutz
    Sokolov, Igor M.
    PHYSICAL REVIEW E, 2012, 86 (02):
  • [7] Run-and-tumble motion in trapping environments
    Angelani, Luca
    PHYSICA SCRIPTA, 2023, 98 (12)
  • [8] Kuramoto model with run-and-tumble dynamics
    Frydel, Derek
    PHYSICAL REVIEW E, 2021, 104 (02)
  • [9] Entropy Production of Run-and-Tumble Particles
    Paoluzzi, Matteo
    Puglisi, Andrea
    Angelani, Luca
    ENTROPY, 2024, 26 (06)
  • [10] Run-and-tumble particles in speckle fields
    Paoluzzi, M.
    Di Leonardo, R.
    Angelani, L.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2014, 26 (37)