Probability distributions for the run-and-tumble models with variable speed and tumbling rate

被引:10
|
作者
Angelani, Luca [1 ,2 ]
Garra, Roberto [3 ]
机构
[1] ISC CNR, Inst Complex Syst, Ple A Moro 2, I-00185 Rome, Italy
[2] Sapienza Univ Roma, Dipartimento Fis, Ple A Moro 2, I-00185 Rome, Italy
[3] Sapienza Univ Roma, Dipartimento Sci Stat, Ple A Moro 2, I-00185 Rome, Italy
来源
关键词
Telegraph equation with time-dependent velocity; run-and-tumble models; exact marginal probability distribution; RANDOM-WALKS; TIME; EQUATIONS;
D O I
10.15559/18-VMSTA127
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper we consider a telegraph equation with time-dependent coefficients, governing the persistent random walk of a particle moving on the line with a time-varying velocity c(t) and changing direction at instants distributed according to a non-stationary Poisson distribution with rate lambda(t). We show that, under suitable assumptions, we are able to find the exact form of the probability distribution. We also consider the space-fractional counterpart of this model, finding the characteristic function of the related process. A conclusive discussion is devoted to the potential applications to run-and-tumble models.
引用
下载
收藏
页码:3 / 12
页数:10
相关论文
共 13 条
  • [1] Probability distributions for the run-and-tumble bacterial dynamics: An analogy to the Lorentz model
    Martens, K.
    Angelani, L.
    Di Leonardo, R.
    Bocquet, L.
    EUROPEAN PHYSICAL JOURNAL E, 2012, 35 (09):
  • [2] Probability distributions for the run-and-tumble bacterial dynamics: An analogy to the Lorentz model
    K. Martens
    L. Angelani
    R. Di Leonardo
    L. Bocquet
    The European Physical Journal E, 2012, 35
  • [3] The role of tumbling frequency and persistence in optimal run-and-tumble chemotaxis
    Goldstein, Raymond E. (R.E.Goldstein@damtp.cam.ac.uk), 1600, Oxford University Press (83):
  • [4] The role of tumbling frequency and persistence in optimal run-and-tumble chemotaxis
    Kirkegaard, Julius B.
    Goldstein, Raymond E.
    IMA JOURNAL OF APPLIED MATHEMATICS, 2018, 83 (04) : 700 - 719
  • [5] Confined run-and-tumble particles with non-Markovian tumbling statistics
    Farago, Oded
    Smith, Naftali R.
    PHYSICAL REVIEW E, 2024, 109 (04)
  • [6] Stationary superstatistics distributions of trapped run-and-tumble particles
    Sevilla, Francisco J.
    Arzola, Alejandro, V
    Cital, Enrique Puga
    PHYSICAL REVIEW E, 2019, 99 (01)
  • [7] Survival probability of a run-and-tumble particle in the presence of a drift
    De Bruyne, Benjamin
    Majumdar, Satya N.
    Schehr, Gregory
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2021, 2021 (04):
  • [8] Run-and-tumble oscillator: Moment analysis of stationary distributions
    Frydel, Derek
    PHYSICS OF FLUIDS, 2023, 35 (10)
  • [9] Run-and-tumble particles in two dimensions: Marginal position distributions
    Santra, Ion
    Basu, Urna
    Sabhapandit, Sanjib
    PHYSICAL REVIEW E, 2020, 101 (06)
  • [10] Universal Survival Probability for a d-Dimensional Run-and-Tumble Particle
    Mori, Francesco
    Le Doussal, Pierre
    Majumdar, Satya N.
    Schehr, Gregory
    PHYSICAL REVIEW LETTERS, 2020, 124 (09)