On products of primes and almost primes in arithmetic progressions

被引:0
|
作者
Igor E. Shparlinski
机构
[1] Macquarie University,Department of Computing
来源
关键词
primes; almost primes; sieve method; exponential sums; 11D61;
D O I
暂无
中图分类号
学科分类号
摘要
We show that for any integers a and m with m ≥ 1 and gcd(a,m) = 1, there is a solution to the congruence pr ≡ a (modm) where p is prime, r is a product of at most k = 17 prime factors and p, r ≤ m. This is a relaxed version of the still open question, studied by P. Erdős, A. M. Odlyzko and A. Sárközy, that corresponds to k = 1 (that is, to products of two primes).
引用
收藏
页码:55 / 61
页数:6
相关论文
共 50 条
  • [31] Biases amongst products of two Beatty primes in arithmetic progressions
    Wannes, Walid
    [J]. INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2024,
  • [32] On the singular series for primes in arithmetic progressions*
    Wenxu Ge
    Huake Liu
    [J]. Lithuanian Mathematical Journal, 2017, 57 : 294 - 318
  • [33] MEAN BEHAVIOR OF PRIMES IN ARITHMETIC PROGRESSIONS
    HUDSON, RH
    BAYS, C
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1977, 296 : 80 - 99
  • [34] ARITHMETIC PROGRESSIONS CONSISTING ONLY OF PRIMES
    GROSSWALD, E
    HAGIS, P
    [J]. MATHEMATICS OF COMPUTATION, 1979, 33 (148) : 1343 - 1352
  • [35] Strings of special primes in arithmetic progressions
    Keenan Monks
    Sarah Peluse
    Lynnelle Ye
    [J]. Archiv der Mathematik, 2013, 101 : 219 - 234
  • [36] PRIMES AND CONSECUTIVE SUMS IN ARITHMETIC PROGRESSIONS
    BESLIN, SJ
    KORTRIGHT, EV
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 1993, 49 (3-4) : 157 - 162
  • [37] ACCUMULATION THEOREMS FOR PRIMES IN ARITHMETIC PROGRESSIONS
    PINTZ, J
    SALERNO, S
    [J]. ACTA MATHEMATICA HUNGARICA, 1985, 46 (1-2) : 151 - 172
  • [38] Primes in arithmetic progressions with friable indices
    Jianya Liu
    Jie Wu
    Ping Xi
    [J]. Science China Mathematics, 2020, 63 : 23 - 38
  • [39] On the singular series for primes in arithmetic progressions
    Ge, Wenxu
    Liu, Huake
    [J]. LITHUANIAN MATHEMATICAL JOURNAL, 2017, 57 (03) : 294 - 318
  • [40] Strings of special primes in arithmetic progressions
    Monks, Keenan
    Peluse, Sarah
    Ye, Lynnelle
    [J]. ARCHIV DER MATHEMATIK, 2013, 101 (03) : 219 - 234