On the singular series for primes in arithmetic progressions

被引:1
|
作者
Ge, Wenxu [1 ]
Liu, Huake [1 ]
机构
[1] North China Univ Water Resources & Elect Power, Sch Math & Informat Sci, Zhengzhou 450046, Henan, Peoples R China
基金
中国国家自然科学基金;
关键词
singular series; prime pair problem; Goldbach problem; arithmetic progressions; Hardy-Littlewood conjecture; GOLDBACH NUMBERS; SHORT INTERVALS;
D O I
10.1007/s10986-017-9362-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using (d, k) to denote the singular series for primes in arithmetic progressions and using the word "tail" to denote the difference of (d, k) and its partial sums, we establish some asymptotic formulas for weighted sums of the square of the tail and so give more information on the singular series (d, k).
引用
收藏
页码:294 / 318
页数:25
相关论文
共 50 条
  • [1] On the singular series for primes in arithmetic progressions*
    Wenxu Ge
    Huake Liu
    Lithuanian Mathematical Journal, 2017, 57 : 294 - 318
  • [2] Arithmetic progressions and the primes
    Tao, Terence
    COLLECTANEA MATHEMATICA, 2006, : 37 - 88
  • [3] PRIMES IN ARITHMETIC PROGRESSIONS
    MOTOHASHI, Y
    INVENTIONES MATHEMATICAE, 1978, 44 (02) : 163 - 178
  • [4] Primes in arithmetic progressions
    Ramare, O
    Rumely, R
    MATHEMATICS OF COMPUTATION, 1996, 65 (213) : 397 - 425
  • [5] PRIMES IN ARITHMETIC PROGRESSIONS
    MONTGOMERY, HL
    MICHIGAN MATHEMATICAL JOURNAL, 1970, 17 (01) : 33 - +
  • [6] PRIMES IN ARITHMETIC PROGRESSIONS
    FOUVRY, E
    IWANIEC, H
    ACTA ARITHMETICA, 1983, 42 (02) : 197 - 218
  • [7] PRIMES IN ARITHMETIC PROGRESSIONS
    DAVENPORT, H
    HALBERSTAM, H
    MICHIGAN MATHEMATICAL JOURNAL, 1966, 13 (04) : 485 - +
  • [8] Products of primes in arithmetic progressions
    Matomaki, Kaisa
    Teravainen, Joni
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2024, 2024 (808): : 193 - 240
  • [9] Product of primes in arithmetic progressions
    Ramare, Olivier
    Srivastav, Priyamvad
    Serra, Oriol
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2020, 16 (04) : 747 - 766
  • [10] Primes in short arithmetic progressions
    Puchta, JC
    ACTA ARITHMETICA, 2003, 106 (02) : 143 - 149