Dirichlet Parabolic Problems Involving Schrödinger Type Operators with Unbounded Diffusion and Singular Potential Terms in Unbounded Domains

被引:0
|
作者
Soumaya Belhaj Ali
机构
[1] University of Tunis El-Manar,Laboratory of Mathematical Analysis and Applications (LMAA
来源
Results in Mathematics | 2019年 / 74卷
关键词
Unbounded diffusions; inverse square potentials; dissipative and dispersive operators; positive strongly continuous semigroups; Hardy’s inequality; weighted Lebesgue spaces; 47D06; 35J75; 35K67; 34G10; 34B05;
D O I
暂无
中图分类号
学科分类号
摘要
We study the well-posedness of autonomous parabolic Dirichlet problems involving Schrödinger type operators of the form Hα,a,b,c=(1+|x|α)Δ+a|x|α+b|x|α-2+c|x|-2,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} H_{\alpha ,a,b,c}=(1+|x|^\alpha )\Delta +a|x|^\alpha +b|x|^{\alpha -2}+c|x|^{-2}, \end{aligned}$$\end{document}with α≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \ge 0$$\end{document}, a<0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a<0$$\end{document} and b,c∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b,c\in \mathbb {R}$$\end{document}, in regular unbounded domains Ω⊂RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega \subset \mathbb {R}^N$$\end{document} containing 0. Under suitable assumptions on α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}, b and c, the solution is governed by a contractive and positivity preserving strongly continuous (analytic) semigroup on the weighted space Lp(Ω,dμ(x))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p(\Omega , d\mu (x))$$\end{document}, 1<p<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1<p<\infty $$\end{document}, where dμ(x)=(1+|x|α)-1dx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\mu (x)=(1+|x|^\alpha )^{-1}dx$$\end{document}. The proofs are based on some Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document}-weighted Hardy’s inequality and perturbation techniques.
引用
收藏
相关论文
共 27 条
  • [1] Dirichlet Parabolic Problems Involving Schrodinger Type Operators with Unbounded Diffusion and Singular Potential Terms in Unbounded Domains
    Ali, Soumaya Belhaj
    [J]. RESULTS IN MATHEMATICS, 2019, 74 (03)
  • [2] Gradient estimates for Dirichlet parabolic problems in unbounded domains
    Fornaro, S
    Metafune, G
    Priola, E
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2004, 205 (02) : 329 - 353
  • [3] Schrodinger-type operators with unbounded diffusion and potential terms
    Canale, Anna
    Rhandi, Abdelaziz
    Tacelli, Cristian
    [J]. ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2016, 16 (02) : 581 - 601
  • [4] Kernel Estimates for Schrodinger Type Operators with Unbounded Diffusion and Potential Terms
    Canale, Anna
    Rhandi, Abdelaziz
    Tacelli, Cristian
    [J]. ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2017, 36 (04): : 377 - 392
  • [5] Elliptic operators with unbounded diffusion, drift and potential terms
    Boutiah, S. E.
    Gregorio, F.
    Rhandi, A.
    Tacelli, C.
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 264 (03) : 2184 - 2204
  • [6] On Schrödinger type operators with unbounded coefficients: generation and heat kernel estimates
    Luca Lorenzi
    Abdelaziz Rhandi
    [J]. Journal of Evolution Equations, 2015, 15 : 53 - 88
  • [7] Kernel estimates for Schrödinger type operators with unbounded coefficients and critical exponents
    Durante T.
    Manzo R.
    Tacelli C.
    [J]. Ricerche di Matematica, 2016, 65 (1) : 289 - 305
  • [8] MULTIPLE SOLUTIONS FOR A SINGULAR ELLIPTIC PROBLEM INVOLVING HARDY TERMS ON UNBOUNDED DOMAINS
    Fan, Haining
    [J]. DIFFERENTIAL AND INTEGRAL EQUATIONS, 2014, 27 (9-10) : 821 - 836
  • [9] On the convergence of splitting methods for linear evolutionary Schrödinger equations involving an unbounded potential
    Christof Neuhauser
    Mechthild Thalhammer
    [J]. BIT Numerical Mathematics, 2009, 49 : 199 - 215
  • [10] Singular Continuous Spectrum and Generic Full Spectral/Packing Dimension for Unbounded Quasiperiodic Schrödinger Operators
    Fan Yang
    Shiwen Zhang
    [J]. Annales Henri Poincaré, 2019, 20 : 2481 - 2494