Dirichlet Parabolic Problems Involving Schrödinger Type Operators with Unbounded Diffusion and Singular Potential Terms in Unbounded Domains

被引:0
|
作者
Soumaya Belhaj Ali
机构
[1] University of Tunis El-Manar,Laboratory of Mathematical Analysis and Applications (LMAA
来源
Results in Mathematics | 2019年 / 74卷
关键词
Unbounded diffusions; inverse square potentials; dissipative and dispersive operators; positive strongly continuous semigroups; Hardy’s inequality; weighted Lebesgue spaces; 47D06; 35J75; 35K67; 34G10; 34B05;
D O I
暂无
中图分类号
学科分类号
摘要
We study the well-posedness of autonomous parabolic Dirichlet problems involving Schrödinger type operators of the form Hα,a,b,c=(1+|x|α)Δ+a|x|α+b|x|α-2+c|x|-2,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} H_{\alpha ,a,b,c}=(1+|x|^\alpha )\Delta +a|x|^\alpha +b|x|^{\alpha -2}+c|x|^{-2}, \end{aligned}$$\end{document}with α≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \ge 0$$\end{document}, a<0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a<0$$\end{document} and b,c∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b,c\in \mathbb {R}$$\end{document}, in regular unbounded domains Ω⊂RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega \subset \mathbb {R}^N$$\end{document} containing 0. Under suitable assumptions on α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}, b and c, the solution is governed by a contractive and positivity preserving strongly continuous (analytic) semigroup on the weighted space Lp(Ω,dμ(x))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p(\Omega , d\mu (x))$$\end{document}, 1<p<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1<p<\infty $$\end{document}, where dμ(x)=(1+|x|α)-1dx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\mu (x)=(1+|x|^\alpha )^{-1}dx$$\end{document}. The proofs are based on some Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document}-weighted Hardy’s inequality and perturbation techniques.
引用
收藏
相关论文
共 27 条