Dirichlet Parabolic Problems Involving Schrodinger Type Operators with Unbounded Diffusion and Singular Potential Terms in Unbounded Domains

被引:0
|
作者
Ali, Soumaya Belhaj [1 ]
机构
[1] Univ Tunis El Manar, Fac Math Phys & Nat Sci Tunis, Lab Math Anal & Applicat LMAA LR11 ES11, Tunis 2092, Tunisia
关键词
Unbounded diffusions; inverse square potentials; dissipative and dispersive operators; positive strongly continuous semigroups; Hardy's inequality; weighted Lebesgue spaces; ELLIPTIC-OPERATORS; COEFFICIENTS; GENERATION;
D O I
10.1007/s00025-019-1025-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the well-posedness of autonomous parabolic Dirichlet problems involving Schrodinger type operators of the form H-alpha,H-a,H-b,H-c = (1 + vertical bar x vertical bar(alpha))Delta + a vertical bar x vertical bar(alpha) + b vertical bar x vertical bar(alpha-2) + c vertical bar x vertical bar(-2) , with alpha >= 0, and a < 0 and b, c is an element of R, in regular unbounded domains Omega subset of R-N containing 0. Under suitable assumptions on alpha, b and c, the solution is governed by a contractive and positivity preserving strongly continuous (analytic) semigroup on the weighted space L-p(Omega, d mu(x)), 1 < p < infinity, where d mu(x) = (1 + vertical bar x vertical bar(alpha))(-1) dx. The proofs are based on some L-p-weighted Hardy's inequality and perturbation techniques.
引用
收藏
页数:27
相关论文
共 50 条
  • [1] Dirichlet Parabolic Problems Involving Schrödinger Type Operators with Unbounded Diffusion and Singular Potential Terms in Unbounded Domains
    Soumaya Belhaj Ali
    [J]. Results in Mathematics, 2019, 74
  • [2] Schrodinger-type operators with unbounded diffusion and potential terms
    Canale, Anna
    Rhandi, Abdelaziz
    Tacelli, Cristian
    [J]. ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2016, 16 (02) : 581 - 601
  • [3] Kernel Estimates for Schrodinger Type Operators with Unbounded Diffusion and Potential Terms
    Canale, Anna
    Rhandi, Abdelaziz
    Tacelli, Cristian
    [J]. ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2017, 36 (04): : 377 - 392
  • [4] Gradient estimates for Dirichlet parabolic problems in unbounded domains
    Fornaro, S
    Metafune, G
    Priola, E
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2004, 205 (02) : 329 - 353
  • [5] General kernel estimates of Schrodinger-type operators with unbounded diffusion terms
    Caso, Loredana
    Kunze, Markus
    Porfido, Marianna
    Rhandi, Abdelaziz
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2024, 154 (03) : 929 - 960
  • [6] Elliptic operators with unbounded diffusion, drift and potential terms
    Boutiah, S. E.
    Gregorio, F.
    Rhandi, A.
    Tacelli, C.
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 264 (03) : 2184 - 2204
  • [7] NON AUTONOMOUS PARABOLIC PROBLEMS WITH UNBOUNDED COEFFICIENTS IN UNBOUNDED DOMAINS
    Angiuli, L.
    Lorenzi, L.
    [J]. ADVANCES IN DIFFERENTIAL EQUATIONS, 2015, 20 (11-12) : 1067 - 1118
  • [8] Elliptic and parabolic problems in unbounded domains
    Guidotti, P
    [J]. MATHEMATISCHE NACHRICHTEN, 2004, 272 : 32 - 45
  • [9] Critical singular problems on unbounded domains
    De Morais Filho, D. C.
    Miyagaki, O. H.
    [J]. ABSTRACT AND APPLIED ANALYSIS, 2005, (06) : 639 - 653
  • [10] MULTIPLE SOLUTIONS FOR A SINGULAR ELLIPTIC PROBLEM INVOLVING HARDY TERMS ON UNBOUNDED DOMAINS
    Fan, Haining
    [J]. DIFFERENTIAL AND INTEGRAL EQUATIONS, 2014, 27 (9-10) : 821 - 836