On the convergence of splitting methods for linear evolutionary Schrödinger equations involving an unbounded potential

被引:0
|
作者
Christof Neuhauser
Mechthild Thalhammer
机构
[1] Leopold-Franzens Universität Innsbruck,Institut für Mathematik
来源
BIT Numerical Mathematics | 2009年 / 49卷
关键词
Linear Schrödinger equations; Unbounded potential; Splitting methods; Convergence; 65L05; 65M12; 65J10;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the convergence behaviour of high-order exponential operator splitting methods for the time integration of linear Schrödinger equations \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{i}\,\partial_{\,t}\psi(x,t)=-\,\tfrac{1}{2}\,\Delta\,\psi(x,t)+V(x)\,\psi(x,t)\,,\quad x\in\mathbb{R}^{d}\,,\ t\geq 0\,,$$\end{document} involving unbounded potentials; in particular, our analysis applies to potentials V defined by polynomials. We deduce a global error estimate which implies that any time-splitting method retains its classical convergence order for linear Schrödinger equations, provided that the exact solution of the considered problem fulfills suitable regularity requirements. Numerical examples illustrate the theoretical result.
引用
下载
收藏
页码:199 / 215
页数:16
相关论文
共 50 条