Improving precipitation forecasts using extreme quantile regression

被引:0
|
作者
Jasper Velthoen
Juan-Juan Cai
Geurt Jongbloed
Maurice Schmeits
机构
[1] Delft University of Technology,Department of Applied Mathematics
[2] The Royal Netherlands Meteorological Institute (KNMI),R&D Weather and Climate Modelling
来源
Extremes | 2019年 / 22卷
关键词
Asymptotics; Extreme conditional quantile; Extreme precipitation; Forecast skill; Local linear quantile regression; Statistical post-processing;
D O I
暂无
中图分类号
学科分类号
摘要
Aiming to estimate extreme precipitation forecast quantiles, we propose a nonparametric regression model that features a constant extreme value index. Using local linear quantile regression and an extrapolation technique from extreme value theory, we develop an estimator for conditional quantiles corresponding to extreme high probability levels. We establish uniform consistency and asymptotic normality of the estimators. In a simulation study, we examine the performance of our estimator on finite samples in comparison with a method assuming linear quantiles. On a precipitation data set in the Netherlands, these estimators have greater predictive skill compared to the upper member of ensemble forecasts provided by a numerical weather prediction model.
引用
收藏
页码:599 / 622
页数:23
相关论文
共 50 条
  • [1] Improving precipitation forecasts using extreme quantile regression
    Velthoen, Jasper
    Cai, Juan-Juan
    Jongbloed, Geurt
    Schmeits, Maurice
    [J]. EXTREMES, 2019, 22 (04) : 599 - 622
  • [2] Statistical downscaling of extreme precipitation events using censored quantile regression
    Friederichs, P.
    Hense, A.
    [J]. MONTHLY WEATHER REVIEW, 2007, 135 (06) : 2365 - 2378
  • [3] Quantile regression for investigating scaling of extreme precipitation with temperature
    Wasko, Conrad
    Sharma, Ashish
    [J]. WATER RESOURCES RESEARCH, 2014, 50 (04) : 3608 - 3614
  • [4] Trends in extreme precipitation indices across China detected using quantile regression
    Fan, Lijun
    Chen, Deliang
    [J]. ATMOSPHERIC SCIENCE LETTERS, 2016, 17 (07): : 400 - 406
  • [5] Improving the calibration of the best member method using quantile regression to forecast extreme temperatures
    Gogonel, A.
    Collet, J.
    Bar-Hen, A.
    [J]. NATURAL HAZARDS AND EARTH SYSTEM SCIENCES, 2013, 13 (05) : 1161 - 1168
  • [6] Statistical downscaling of precipitation using quantile regression
    Tareghian, Reza
    Rasmussen, Peter F.
    [J]. JOURNAL OF HYDROLOGY, 2013, 487 : 122 - 135
  • [7] Improving Global Forecast System of extreme precipitation events with regional statistical model: Application of quantile-based probabilistic forecasts
    Shastri, Hiteshri
    Ghosh, Subimal
    Karmakar, Subhankar
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2017, 122 (03) : 1617 - 1634
  • [8] Probabilistic wind power forecasts using local quantile regression
    Bremnes, JB
    [J]. WIND ENERGY, 2004, 7 (01) : 47 - 54
  • [9] Analysis of changes in extreme temperatures using quantile regression
    Lee, Kyoungmi
    Baek, Hee-Jeong
    Cho, ChunHo
    [J]. ASIA-PACIFIC JOURNAL OF ATMOSPHERIC SCIENCES, 2013, 49 (03) : 313 - 323
  • [10] Analysis of changes in extreme temperatures using quantile regression
    Kyoungmi Lee
    Hee-Jeong Baek
    ChunHo Cho
    [J]. Asia-Pacific Journal of Atmospheric Sciences, 2013, 49 : 313 - 323