Improving precipitation forecasts using extreme quantile regression

被引:0
|
作者
Jasper Velthoen
Juan-Juan Cai
Geurt Jongbloed
Maurice Schmeits
机构
[1] Delft University of Technology,Department of Applied Mathematics
[2] The Royal Netherlands Meteorological Institute (KNMI),R&D Weather and Climate Modelling
来源
Extremes | 2019年 / 22卷
关键词
Asymptotics; Extreme conditional quantile; Extreme precipitation; Forecast skill; Local linear quantile regression; Statistical post-processing;
D O I
暂无
中图分类号
学科分类号
摘要
Aiming to estimate extreme precipitation forecast quantiles, we propose a nonparametric regression model that features a constant extreme value index. Using local linear quantile regression and an extrapolation technique from extreme value theory, we develop an estimator for conditional quantiles corresponding to extreme high probability levels. We establish uniform consistency and asymptotic normality of the estimators. In a simulation study, we examine the performance of our estimator on finite samples in comparison with a method assuming linear quantiles. On a precipitation data set in the Netherlands, these estimators have greater predictive skill compared to the upper member of ensemble forecasts provided by a numerical weather prediction model.
引用
收藏
页码:599 / 622
页数:23
相关论文
共 50 条
  • [21] Estimation of the uncertainty in water level forecasts at ungauged river locations using quantile regression
    Roscoe, Kathryn L.
    Weerts, Albrecht H.
    Schroevers, Marinus
    [J]. INTERNATIONAL JOURNAL OF RIVER BASIN MANAGEMENT, 2012, 10 (04) : 383 - 394
  • [22] Using quantile regression to extend an existing wind power forecasting system with probabilistic forecasts
    Nielsen, HA
    Madsen, H
    Nielsen, TS
    [J]. WIND ENERGY, 2006, 9 (1-2) : 95 - 108
  • [23] How Suitable is Quantile Mapping For Postprocessing GCM Precipitation Forecasts?
    Zhao, Tongtiegang
    Bennett, James C.
    Wang, Q. J.
    Schepen, Andrew
    Wood, Andrew W.
    Robertson, David E.
    Ramos, Maria-Helena
    [J]. JOURNAL OF CLIMATE, 2017, 30 (09) : 3185 - 3196
  • [24] Probabilistic Forecasts Based on Quantile Regression for Regional Wind Farms
    Wang, Zhao
    Wang, Bo
    Feng, Shuanglei
    Wang, Weisheng
    [J]. Dianwang Jishu/Power System Technology, 2020, 44 (04): : 1368 - 1375
  • [25] Extreme Rainfall Prediction using Bayesian Quantile Regression in Statistical Downscaling Modeling
    Rachmawati, Ro'fah Nur
    Sungkawa, Iwa
    Rahayu, Anita
    [J]. 4TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND COMPUTATIONAL INTELLIGENCE (ICCSCI 2019) : ENABLING COLLABORATION TO ESCALATE IMPACT OF RESEARCH RESULTS FOR SOCIETY, 2019, 157 : 406 - 413
  • [26] Statistical Downscaling Modeling With Quantile Regression Using Lasso To Estimate Extreme Rainfall
    Santri, Dewi
    Wigena, Aji Hamim
    Djuraidah, Anik
    [J]. PROCEEDINGS OF THE 7TH SEAMS UGM INTERNATIONAL CONFERENCE ON MATHEMATICS AND ITS APPLICATIONS 2015: ENHANCING THE ROLE OF MATHEMATICS IN INTERDISCIPLINARY RESEARCH, 2016, 1707
  • [27] Return forecasts and optimal portfolio construction: a quantile regression approach
    Ma, Lingjie
    Pohlman, Larry
    [J]. EUROPEAN JOURNAL OF FINANCE, 2008, 14 (05): : 409 - 425
  • [28] Quantile Regression Estimates of Confidence Intervals for WASDE Price Forecasts
    Isengildina-Massa, Olga
    Irwin, Scott H.
    Good, Darrel L.
    [J]. JOURNAL OF AGRICULTURAL AND RESOURCE ECONOMICS, 2010, 35 (03) : 545 - 567
  • [29] Analysis of Average Daily Temperature and Precipitation on the Territory of Belarus Using Quantile Regression
    Loginov, V. F.
    Khitrykau, M. A.
    [J]. RUSSIAN METEOROLOGY AND HYDROLOGY, 2024, 49 (05) : 402 - 409
  • [30] Improving linear quantile regression for replicated data
    Jana, Kaushik
    Sengupta, Debasis
    [J]. STATISTICS, 2022, 56 (06) : 1193 - 1206