Statistical downscaling of extreme precipitation events using censored quantile regression

被引:131
|
作者
Friederichs, P. [1 ]
Hense, A. [1 ]
机构
[1] Univ Bonn, Inst Meteorol, D-53121 Bonn, Germany
关键词
D O I
10.1175/MWR3403.1
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
A statistical downscaling approach for extremes using censored quantile regression is presented. Conditional quantiles of station data (e.g., daily precipitation sums) in Germany are estimated by means of the large-scale circulation as represented by the NCEP reanalysis data. It is shown that a mixed discrete continuous response variable, such as a daily precipitation sum, can be statistically modeled by a censored variable. Furthermore, a conditional quantile skill score is formulated to assess the relative gain of a quantile forecast compared with a reference forecast. Just like multiple regression for expectation values, quantile regression provides a tool to formulate a model output statistics system for extremal quantiles.
引用
收藏
页码:2365 / 2378
页数:14
相关论文
共 50 条
  • [1] Statistical downscaling of precipitation using quantile regression
    Tareghian, Reza
    Rasmussen, Peter F.
    [J]. JOURNAL OF HYDROLOGY, 2013, 487 : 122 - 135
  • [2] Statistical downscaling of extreme precipitation events using extreme value theory
    Friederichs, Petra
    [J]. EXTREMES, 2010, 13 (02) : 109 - 132
  • [3] Statistical downscaling of extreme precipitation events using extreme value theory
    Petra Friederichs
    [J]. Extremes, 2010, 13 : 109 - 132
  • [4] Statistical Downscaling Modeling With Quantile Regression Using Lasso To Estimate Extreme Rainfall
    Santri, Dewi
    Wigena, Aji Hamim
    Djuraidah, Anik
    [J]. PROCEEDINGS OF THE 7TH SEAMS UGM INTERNATIONAL CONFERENCE ON MATHEMATICS AND ITS APPLICATIONS 2015: ENHANCING THE ROLE OF MATHEMATICS IN INTERDISCIPLINARY RESEARCH, 2016, 1707
  • [5] Extreme Rainfall Prediction using Bayesian Quantile Regression in Statistical Downscaling Modeling
    Rachmawati, Ro'fah Nur
    Sungkawa, Iwa
    Rahayu, Anita
    [J]. 4TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND COMPUTATIONAL INTELLIGENCE (ICCSCI 2019) : ENABLING COLLABORATION TO ESCALATE IMPACT OF RESEARCH RESULTS FOR SOCIETY, 2019, 157 : 406 - 413
  • [6] Quantile-Regression-Ensemble: A Deep Learning Algorithm for Downscaling Extreme Precipitation
    Bailie, Thomas
    Koh, Yun Sing
    Rampal, Neelesh
    Gibson, Peter B.
    [J]. THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 20, 2024, : 21914 - 21922
  • [7] Improving precipitation forecasts using extreme quantile regression
    Velthoen, Jasper
    Cai, Juan-Juan
    Jongbloed, Geurt
    Schmeits, Maurice
    [J]. EXTREMES, 2019, 22 (04) : 599 - 622
  • [8] Improving precipitation forecasts using extreme quantile regression
    Jasper Velthoen
    Juan-Juan Cai
    Geurt Jongbloed
    Maurice Schmeits
    [J]. Extremes, 2019, 22 : 599 - 622
  • [9] Multisite and multivariable statistical downscaling using a Gaussian copula quantile regression model
    Ben Alaya, M. A.
    Chebana, F.
    Ouarda, T. B. M. J.
    [J]. CLIMATE DYNAMICS, 2016, 47 (5-6) : 1383 - 1397
  • [10] Multisite and multivariable statistical downscaling using a Gaussian copula quantile regression model
    M. A. Ben Alaya
    F. Chebana
    T. B. M. J. Ouarda
    [J]. Climate Dynamics, 2016, 47 : 1383 - 1397