An Optimal Subgradient Algorithm with Subspace Search for Costly Convex Optimization Problems

被引:0
|
作者
Masoud Ahookhosh
Arnold Neumaier
机构
[1] University of Vienna,Faculty of Mathematics
来源
Bulletin of the Iranian Mathematical Society | 2019年 / 45卷
关键词
Convex optimization; Nonsmooth optimization; Subgradient methods; Multidimensional subspace search; Optimal complexity; First-order black-box information; Costly linear operator; 90C25; 90C60; 49M37; 65K05; 68Q25;
D O I
暂无
中图分类号
学科分类号
摘要
This paper presents an acceleration of the optimal subgradient algorithm OSGA (Neumaier in Math Program 158(1–2):1–21, 2016) for solving structured convex optimization problems, where the objective function involves costly affine and cheap nonlinear terms. We combine OSGA with a multidimensional subspace search technique, which leads to a low-dimensional auxiliary problem that can be solved efficiently. Numerical results concerning some applications are reported. A software package implementing the new method is available.
引用
收藏
页码:883 / 910
页数:27
相关论文
共 50 条
  • [31] An asynchronous subgradient-proximal method for solving additive convex optimization problems
    Tipsuda Arunrat
    Sakrapee Namsak
    Nimit Nimana
    Journal of Applied Mathematics and Computing, 2023, 69 : 3911 - 3936
  • [32] An asynchronous subgradient-proximal method for solving additive convex optimization problems
    Arunrat, Tipsuda
    Namsak, Sakrapee
    Nimana, Nimit
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2023, 69 (05) : 3911 - 3936
  • [33] On Distributed Nonconvex Optimization: Projected Subgradient Method for Weakly Convex Problems in Networks
    Chen, Shixiang
    Garcia, Alfredo
    Shahrampour, Shahin
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2022, 67 (02) : 662 - 675
  • [34] Continuous-Time Distributed Subgradient Algorithm for Convex Optimization With General Constraints
    Zhu, Yanan
    Yu, Wenwu
    Wen, Guanghui
    Chen, Guanrong
    Ren, Wei
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2019, 64 (04) : 1694 - 1701
  • [35] A Parallel Line Search Subspace Correction Method for Composite Convex Optimization
    Dong Q.
    Liu X.
    Wen Z.-W.
    Yuan Y.-X.
    J. Oper. Res. Soc. China, 2 (163-187): : 163 - 187
  • [36] AN-SPS: adaptive sample size nonmonotone line search spectral projected subgradient method for convex constrained optimization problems
    Krklec Jerinkic, Natasa
    Ostojic, Tijana
    OPTIMIZATION METHODS & SOFTWARE, 2024, 39 (05): : 1143 - 1167
  • [37] Subgradient ellipsoid method for nonsmooth convex problems
    Rodomanov, Anton
    Nesterov, Yurii
    MATHEMATICAL PROGRAMMING, 2023, 199 (1-2) : 305 - 341
  • [38] AN OPTIMAL ALGORITHM FOR CONSTRAINED DIFFERENTIABLE CONVEX OPTIMIZATION
    Gonzaga, Clovis C.
    Karas, Elizabeth W.
    Rossetto, Diane R.
    SIAM JOURNAL ON OPTIMIZATION, 2013, 23 (04) : 1939 - 1955
  • [39] Subgradient ellipsoid method for nonsmooth convex problems
    Anton Rodomanov
    Yurii Nesterov
    Mathematical Programming, 2023, 199 : 305 - 341
  • [40] A parallel subgradient projection algorithm for quasiconvex equilibrium problems under the intersection of convex sets
    Le Hai Yen
    Le Dung Muu
    OPTIMIZATION, 2022, 71 (15) : 4447 - 4462