An Optimal Subgradient Algorithm with Subspace Search for Costly Convex Optimization Problems

被引:0
|
作者
Masoud Ahookhosh
Arnold Neumaier
机构
[1] University of Vienna,Faculty of Mathematics
关键词
Convex optimization; Nonsmooth optimization; Subgradient methods; Multidimensional subspace search; Optimal complexity; First-order black-box information; Costly linear operator; 90C25; 90C60; 49M37; 65K05; 68Q25;
D O I
暂无
中图分类号
学科分类号
摘要
This paper presents an acceleration of the optimal subgradient algorithm OSGA (Neumaier in Math Program 158(1–2):1–21, 2016) for solving structured convex optimization problems, where the objective function involves costly affine and cheap nonlinear terms. We combine OSGA with a multidimensional subspace search technique, which leads to a low-dimensional auxiliary problem that can be solved efficiently. Numerical results concerning some applications are reported. A software package implementing the new method is available.
引用
收藏
页码:883 / 910
页数:27
相关论文
共 50 条
  • [1] An Optimal Subgradient Algorithm with Subspace Search for Costly Convex Optimization Problems
    Ahookhosh, Masoud
    Neumaier, Arnold
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2019, 45 (03) : 883 - 910
  • [2] Distributed Subgradient Projection Algorithm for Convex Optimization
    Ram, S. Sundhar
    Nedic, A.
    Veeravalli, V. V.
    2009 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS 1- 8, PROCEEDINGS, 2009, : 3653 - 3656
  • [3] An optimal subgradient algorithm for large-scale bound-constrained convex optimization
    Ahookhosh, Masoud
    Neumaier, Arnold
    MATHEMATICAL METHODS OF OPERATIONS RESEARCH, 2017, 86 (01) : 123 - 147
  • [4] An optimal subgradient algorithm for large-scale bound-constrained convex optimization
    Masoud Ahookhosh
    Arnold Neumaier
    Mathematical Methods of Operations Research, 2017, 86 : 123 - 147
  • [5] Subgradient algorithm for split hierarchical optimization problems
    Nimana, Nimit
    Petrot, Narin
    CARPATHIAN JOURNAL OF MATHEMATICS, 2018, 34 (03) : 391 - 399
  • [6] Spectral projected subgradient method for nonsmooth convex optimization problems
    Krejic, Natasa
    Jerinkic, Natasa Krklec
    Ostojic, Tijana
    NUMERICAL ALGORITHMS, 2023, 93 (01) : 347 - 365
  • [7] Spectral projected subgradient method for nonsmooth convex optimization problems
    Nataša Krejić
    Nataša Krklec Jerinkić
    Tijana Ostojić
    Numerical Algorithms, 2023, 93 : 347 - 365
  • [8] Subgradient Methods and Consensus Algorithms for Solving Convex Optimization Problems
    Johansson, Bjorn
    Keviczky, Tamas
    Johansson, Mikael
    Johansson, Karl Henrik
    47TH IEEE CONFERENCE ON DECISION AND CONTROL, 2008 (CDC 2008), 2008, : 4185 - 4190
  • [9] Inexact proximal ε-subgradient methods for composite convex optimization problems
    Millan, R. Diaz
    Machado, M. Penton
    JOURNAL OF GLOBAL OPTIMIZATION, 2019, 75 (04) : 1029 - 1060
  • [10] STOCHASTIC SUBGRADIENT METHOD FOR QUASI-CONVEX OPTIMIZATION PROBLEMS
    Hu, Yaohua
    Yu, Carisa Kwok Wai
    Li, Chong
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2016, 17 (04) : 711 - 724