Subgradient Methods and Consensus Algorithms for Solving Convex Optimization Problems

被引:197
|
作者
Johansson, Bjorn [1 ]
Keviczky, Tamas [2 ]
Johansson, Mikael [1 ]
Johansson, Karl Henrik [1 ]
机构
[1] Royal Inst Technol, KTH, ACCESS Linnaeus Ctr, Sch Elect Engn, S-10044 Stockholm, Sweden
[2] Delft Univ Technol, Delft Ctr Syst & Control, NL-2600 AA Delft, Netherlands
关键词
D O I
10.1109/CDC.2008.4739339
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we propose a subgradient method for solving coupled optimization problems in a distributed way given restrictions on the communication topology. The iterative procedure maintains local variables at each node and relies on local subgradient updates in combination with a consensus process. The local subgradient steps are applied simultaneously as opposed to the standard sequential or cyclic procedure. We study convergence properties of the proposed scheme using results from consensus theory and approximate subgradient methods. The framework is illustrated on an optimal distributed finite-time rendezvous problem.
引用
收藏
页码:4185 / 4190
页数:6
相关论文
共 50 条
  • [1] A SUBGRADIENT METHOD BASED ON GRADIENT SAMPLING FOR SOLVING CONVEX OPTIMIZATION PROBLEMS
    Hu, Yaohua
    Sim, Chee-Khian
    Yang, Xiaoqi
    [J]. NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2015, 36 (12) : 1559 - 1584
  • [2] ε-subgradient algorithms for bilevel convex optimization
    Helou, Elias S.
    Simoes, Lucas E. A.
    [J]. INVERSE PROBLEMS, 2017, 33 (05)
  • [3] Inexact proximal ε-subgradient methods for composite convex optimization problems
    Millan, R. Diaz
    Machado, M. Penton
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2019, 75 (04) : 1029 - 1060
  • [4] Inexact subgradient methods for quasi-convex optimization problems
    Hu, Yaohua
    Yang, Xiaoqi
    Sim, Chee-Khian
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2015, 240 (02) : 315 - 327
  • [5] An asynchronous subgradient-proximal method for solving additive convex optimization problems
    Tipsuda Arunrat
    Sakrapee Namsak
    Nimit Nimana
    [J]. Journal of Applied Mathematics and Computing, 2023, 69 : 3911 - 3936
  • [6] An asynchronous subgradient-proximal method for solving additive convex optimization problems
    Arunrat, Tipsuda
    Namsak, Sakrapee
    Nimana, Nimit
    [J]. JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2023, 69 (05) : 3911 - 3936
  • [7] Convergence rates of subgradient methods for quasi-convex optimization problems
    Hu, Yaohua
    Li, Jiawen
    Yu, Carisa Kwok Wai
    [J]. COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2020, 77 (01) : 183 - 212
  • [8] CONDITIONAL SUBGRADIENT METHODS FOR CONSTRAINED QUASI-CONVEX OPTIMIZATION PROBLEMS
    Hu, Yaohua
    Yu, Carisa Kwok Wai
    Li, Chong
    Yang, Xiaoqi
    [J]. JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2016, 17 (10) : 2143 - 2158
  • [9] Convergence rates of subgradient methods for quasi-convex optimization problems
    Yaohua Hu
    Jiawen Li
    Carisa Kwok Wai Yu
    [J]. Computational Optimization and Applications, 2020, 77 : 183 - 212
  • [10] INCREMENTAL STOCHASTIC SUBGRADIENT ALGORITHMS FOR CONVEX OPTIMIZATION
    Ram, S. Sundhar
    Nedic, A.
    Veeravalli, V. V.
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2009, 20 (02) : 691 - 717