Self-Adjointness in Klein-Gordon Theory on Globally Hyperbolic Spacetimes

被引:0
|
作者
Albert Much
Robert Oeckl
机构
[1] Universität Leipzig,Institut für Theoretische Physik
[2] Universidad Nacional Autónoma de México,Centro de Ciencias Matemáticas
关键词
Quantum field theory on curved spacetimes; Selfadjointness; 81Sxx; 83Cxx; 81Txx; 58Jxx;
D O I
暂无
中图分类号
学科分类号
摘要
We prove essential self-adjointness of the spatial part of the linear Klein-Gordon operator with external potential for a large class of globally hyperbolic manifolds. The proof is conducted by a fusion of new results concerning globally hyperbolic manifolds, the theory of weighted Hilbert spaces and related functional analytic advances.
引用
收藏
相关论文
共 50 条
  • [31] Decay Properties of Klein-Gordon Fields on Kerr-AdS Spacetimes
    Holzegel, Gustav
    Smulevici, Jacques
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2013, 66 (11) : 1751 - 1802
  • [32] Perturbation theory for nonlinear Klein-Gordon kinks
    Yan, JR
    Tang, Y
    Zhou, GH
    COMMUNICATIONS IN THEORETICAL PHYSICS, 1999, 32 (03) : 375 - 380
  • [33] Klein-Gordon Theory in Noncommutative Phase Space
    Liang, Shi-Dong
    SYMMETRY-BASEL, 2023, 15 (02):
  • [34] PERTURBATION THEORY FOR NONLINEAR KLEIN-GORDON EQUATION
    刘天贵
    颜家壬
    Applied Mathematics and Mechanics(English Edition), 2002, (08) : 987 - 992
  • [35] NUMERICAL TREATMENT OF COUPLED NONLINEAR HYPERBOLIC KLEIN-GORDON EQUATIONS
    Doha, E. H.
    Bhrawy, A. H.
    Baleanu, D.
    Abdelkawy, M. A.
    ROMANIAN JOURNAL OF PHYSICS, 2014, 59 (3-4): : 247 - 264
  • [36] Perturbation theory for nonlinear klein-gordon equation
    LIU Tian-gui
    YAN Jia-ren
    Applied Mathematics and Mechanics, 2002, 23 (8) : 987 - 992
  • [37] Perturbation theory for nonlinear Klein-Gordon equation
    Liu, TG
    Yan, JR
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2002, 23 (08) : 987 - 992
  • [38] SPECTRAL AND SCATTERING THEORY FOR KLEIN-GORDON EQUATION
    LUNDBERG, LE
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1973, 31 (03) : 243 - 257
  • [39] ALGEBRAIC APPROACH TO THE KLEIN-GORDON EQUATION WITH HYPERBOLIC SCARF POTENTIAL
    Dong, Shishan
    Dong, Shi-Hai
    Bahlouli, H.
    Bezerra, V. B.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS E, 2011, 20 (01): : 55 - 61
  • [40] Nonlinear Self-Adjointness and Conservation Laws for the Hyperbolic Geometric Flow Equation
    Silva, Kenio A. A.
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2013, 20 (01) : 28 - 43