Nonexistence of global solutions of fractional diffusion equation with time-space nonlocal source

被引:0
|
作者
Abderrazak Nabti
Ahmed Alsaedi
Mokhtar Kirane
Bashir Ahmad
机构
[1] University of Larbi Tebessi,Laboratory of Mathematics and Informatics and Systems
[2] King Abdulaziz University,NAAM, Nonlinear Analysis and Applied Mathematics Research Group, Faculty of Sciences
[3] Khalifa University of Science and Technology,Department of Mathematics and Statistics, College of Art and Sciences
关键词
Nonlocal source; Test function; Nonexistence of global solution; 26A33; 35A01; 35K55;
D O I
暂无
中图分类号
学科分类号
摘要
We prove the nonexistence of solutions of the fractional diffusion equation with time-space nonlocal source ut+(−Δ)β2u=(1+|x|)γ∫0t(t−s)α−1|u|p∥ν1q(x)u∥qrds\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\begin{aligned} u_{t} + (-\Delta )^{\frac{\beta }{2}} u =\bigl(1+ \vert x \vert \bigr)^{ \gamma } \int _{0}^{t} (t-s)^{\alpha -1} \vert u \vert ^{p} \bigl\Vert \nu ^{ \frac{1}{q}}(x) u \bigr\Vert _{q}^{r} \,ds \end{aligned}$$ \end{document} for (x,t)∈RN×(0,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(x,t) \in \mathbb{R}^{N}\times (0,\infty )$\end{document} with initial data u(x,0)=u0(x)∈Lloc1(RN)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$u(x,0)=u_{0}(x) \in L^{1}_{\mathrm{loc}}(\mathbb{R}^{N})$\end{document}, where p,q,r>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p,q,r>1$\end{document}, q(p+r)>q+r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$q(p+r)>q+r$\end{document}, 0<γ≤2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0<\gamma \leq 2 $\end{document}, 0<α<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0<\alpha <1$\end{document}, 0<β≤2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0<\beta \leq 2$\end{document}, (−Δ)β2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(-\Delta )^{\frac{\beta }{2}}$\end{document} stands for the fractional Laplacian operator of order β, the weight function ν(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\nu (x)$\end{document} is positive and singular at the origin, and ∥⋅∥q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Vert \cdot \Vert _{q}$\end{document} is the norm of Lq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L^{q}$\end{document} space.
引用
收藏
相关论文
共 50 条
  • [31] Trapezoidal scheme for time-space fractional diffusion equation with Riesz derivative
    Arshad, Sadia
    Huang, Jianfei
    Khaliq, Abdul Q. M.
    Tang, Yifa
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 350 : 1 - 15
  • [32] Identifying an unknown source term in a time-space fractional parabolic equation
    Nguyen Van Thang
    Nguyen Van Duc
    Luong Duy Nhat Minh
    Nguyen Trung Thanh
    [J]. APPLIED NUMERICAL MATHEMATICS, 2021, 166 : 313 - 332
  • [33] Boundary stabilization for time-space fractional diffusion-wave equation
    Huang, Jianping
    Zhou, Hua-Cheng
    [J]. 2021 9TH INTERNATIONAL CONFERENCE ON SYSTEMS AND CONTROL (ICSC'21), 2021, : 306 - 311
  • [34] Landweber Iterative Method for an Inverse Source Problem of Time-Space Fractional Diffusion-Wave Equation
    Yang, Fan
    Zhang, Yan
    Li, Xiao-Xiao
    [J]. COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2024, 24 (01) : 265 - 278
  • [35] Finite difference scheme for time-space fractional diffusion equation with fractional boundary conditions
    Xie, Changping
    Fang, Shaomei
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (06) : 3473 - 3487
  • [36] Life span of blowing-up solutions to the Cauchy problem for a time-space fractional diffusion equation
    Nabti, Abderrazak
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2019, 78 (05) : 1302 - 1316
  • [37] Nonexistence and multiplicity of positive solutions for an equation with degenerate nonlocal diffusion
    Gasinski, Leszek
    Junior Santos, Joao R.
    [J]. BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2020, 52 (03) : 489 - 497
  • [38] Blow-up and global existence of solutions for time-space fractional pseudo-parabolic equation
    Li, Yaning
    Yang, Yuting
    [J]. AIMS MATHEMATICS, 2023, 8 (08): : 17827 - 17859
  • [39] Nonexistence of global solutions for a time-fractional damped wave equation in a k-times halved space
    Agarwal, Ravi P.
    Jleli, Mohamed
    Samet, Bessem
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2019, 78 (05) : 1608 - 1620
  • [40] Numerical Solution for a Nonlinear Time-Space Fractional Convection-Diffusion Equation
    Basha, Merfat
    Anley, Eyaya Fekadie
    Dai, Binxiang
    [J]. JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2023, 18 (01):