Nonexistence of global solutions of fractional diffusion equation with time-space nonlocal source

被引:0
|
作者
Abderrazak Nabti
Ahmed Alsaedi
Mokhtar Kirane
Bashir Ahmad
机构
[1] University of Larbi Tebessi,Laboratory of Mathematics and Informatics and Systems
[2] King Abdulaziz University,NAAM, Nonlinear Analysis and Applied Mathematics Research Group, Faculty of Sciences
[3] Khalifa University of Science and Technology,Department of Mathematics and Statistics, College of Art and Sciences
关键词
Nonlocal source; Test function; Nonexistence of global solution; 26A33; 35A01; 35K55;
D O I
暂无
中图分类号
学科分类号
摘要
We prove the nonexistence of solutions of the fractional diffusion equation with time-space nonlocal source ut+(−Δ)β2u=(1+|x|)γ∫0t(t−s)α−1|u|p∥ν1q(x)u∥qrds\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\begin{aligned} u_{t} + (-\Delta )^{\frac{\beta }{2}} u =\bigl(1+ \vert x \vert \bigr)^{ \gamma } \int _{0}^{t} (t-s)^{\alpha -1} \vert u \vert ^{p} \bigl\Vert \nu ^{ \frac{1}{q}}(x) u \bigr\Vert _{q}^{r} \,ds \end{aligned}$$ \end{document} for (x,t)∈RN×(0,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(x,t) \in \mathbb{R}^{N}\times (0,\infty )$\end{document} with initial data u(x,0)=u0(x)∈Lloc1(RN)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$u(x,0)=u_{0}(x) \in L^{1}_{\mathrm{loc}}(\mathbb{R}^{N})$\end{document}, where p,q,r>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p,q,r>1$\end{document}, q(p+r)>q+r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$q(p+r)>q+r$\end{document}, 0<γ≤2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0<\gamma \leq 2 $\end{document}, 0<α<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0<\alpha <1$\end{document}, 0<β≤2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0<\beta \leq 2$\end{document}, (−Δ)β2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(-\Delta )^{\frac{\beta }{2}}$\end{document} stands for the fractional Laplacian operator of order β, the weight function ν(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\nu (x)$\end{document} is positive and singular at the origin, and ∥⋅∥q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Vert \cdot \Vert _{q}$\end{document} is the norm of Lq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L^{q}$\end{document} space.
引用
收藏
相关论文
共 50 条
  • [21] Recovering a space-dependent source term for distributed order time-space fractional diffusion equation
    Lyu, Kaiyu
    Cheng, Hao
    [J]. NUMERICAL ALGORITHMS, 2024,
  • [22] Determination of three parameters in a time-space fractional diffusion equation
    Xiong, Xiangtuan
    Shi, Wanxia
    Xue, Xuemin
    [J]. AIMS MATHEMATICS, 2021, 6 (06): : 5909 - 5923
  • [23] QUALITATIVE PROPERTIES OF SOLUTIONS TO A TIME-SPACE FRACTIONAL EVOLUTION EQUATION
    Fino, Ahmad Z.
    Kirane, Mokhtar
    [J]. QUARTERLY OF APPLIED MATHEMATICS, 2012, 70 (01) : 133 - 157
  • [24] A family of solutions of the time-space fractional longitudinal wave equation
    Liu, Jian-Gen
    Feng, Yi-Ying
    [J]. COMMUNICATIONS IN THEORETICAL PHYSICS, 2023, 75 (07)
  • [25] S-asymptotically ω-periodic solutions for time-space fractional nonlocal reaction-diffusion equation with superlinear growth nonlinear terms
    Chen, Pengyu
    Ding, Kaibo
    Zhang, Xuping
    [J]. FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2024,
  • [26] TIKHONOV REGULARIZATION METHOD OF AN INVERSE SPACE-DEPENDENT SOURCE PROBLEM FOR A TIME-SPACE FRACTIONAL DIFFUSION EQUATION
    Li, Jing
    Tong, Gongsheng
    Duan, Rouzi
    Qin, Shanlin
    [J]. JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2021, 11 (05): : 2387 - 2401
  • [27] An efficient computational approach for the solution of time-space fractional diffusion equation
    Santra, Sudarshan
    Mohapatra, Jugal
    [J]. INTERNATIONAL JOURNAL OF MODELLING AND SIMULATION, 2023, 43 (04): : 393 - 405
  • [28] Nonexistence of global solutions for a class of nonlocal in time and space nonlinear evolution equations
    Jleli, Mohamed
    Kirane, Mokhtar
    Samet, Bessem
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 75 (08) : 2698 - 2709
  • [29] A Galerkin finite element scheme for time-space fractional diffusion equation
    Zhao, Zhengang
    Zheng, Yunying
    Guo, Peng
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2016, 93 (07) : 1212 - 1225
  • [30] General Pade approximation method for time-space fractional diffusion equation
    Ding, Hengfei
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2016, 299 : 221 - 228