Nonexistence of global solutions of fractional diffusion equation with time-space nonlocal source

被引:0
|
作者
Abderrazak Nabti
Ahmed Alsaedi
Mokhtar Kirane
Bashir Ahmad
机构
[1] University of Larbi Tebessi,Laboratory of Mathematics and Informatics and Systems
[2] King Abdulaziz University,NAAM, Nonlinear Analysis and Applied Mathematics Research Group, Faculty of Sciences
[3] Khalifa University of Science and Technology,Department of Mathematics and Statistics, College of Art and Sciences
关键词
Nonlocal source; Test function; Nonexistence of global solution; 26A33; 35A01; 35K55;
D O I
暂无
中图分类号
学科分类号
摘要
We prove the nonexistence of solutions of the fractional diffusion equation with time-space nonlocal source ut+(−Δ)β2u=(1+|x|)γ∫0t(t−s)α−1|u|p∥ν1q(x)u∥qrds\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\begin{aligned} u_{t} + (-\Delta )^{\frac{\beta }{2}} u =\bigl(1+ \vert x \vert \bigr)^{ \gamma } \int _{0}^{t} (t-s)^{\alpha -1} \vert u \vert ^{p} \bigl\Vert \nu ^{ \frac{1}{q}}(x) u \bigr\Vert _{q}^{r} \,ds \end{aligned}$$ \end{document} for (x,t)∈RN×(0,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(x,t) \in \mathbb{R}^{N}\times (0,\infty )$\end{document} with initial data u(x,0)=u0(x)∈Lloc1(RN)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$u(x,0)=u_{0}(x) \in L^{1}_{\mathrm{loc}}(\mathbb{R}^{N})$\end{document}, where p,q,r>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p,q,r>1$\end{document}, q(p+r)>q+r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$q(p+r)>q+r$\end{document}, 0<γ≤2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0<\gamma \leq 2 $\end{document}, 0<α<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0<\alpha <1$\end{document}, 0<β≤2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0<\beta \leq 2$\end{document}, (−Δ)β2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(-\Delta )^{\frac{\beta }{2}}$\end{document} stands for the fractional Laplacian operator of order β, the weight function ν(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\nu (x)$\end{document} is positive and singular at the origin, and ∥⋅∥q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Vert \cdot \Vert _{q}$\end{document} is the norm of Lq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L^{q}$\end{document} space.
引用
收藏
相关论文
共 50 条
  • [1] Nonexistence of global solutions of fractional diffusion equation with time-space nonlocal source
    Nabti, Abderrazak
    Alsaedi, Ahmed
    Kirane, Mokhtar
    Ahmad, Bashir
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [2] Effects of bounded space in the solutions of time-space fractional diffusion equation
    Allami, M. H.
    Shokri, B.
    [J]. PHYSICAL REVIEW E, 2010, 82 (06):
  • [3] On a time-space fractional diffusion equation with a semilinear source of exponential type
    Nguyen, Anh Tuan
    Yang, Chao
    [J]. ELECTRONIC RESEARCH ARCHIVE, 2022, 30 (04): : 1354 - 1373
  • [4] Qualitative properties of solutions to a nonlinear time-space fractional diffusion equation
    Borikhanov, Meiirkhan. B. B.
    Ruzhansky, Michael
    Torebek, Berikbol. T. T.
    [J]. FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2023, 26 (01) : 111 - 146
  • [5] Difference numerical solutions for time-space fractional advection diffusion equation
    Zhang, Fangfang
    Gao, Xiaoyang
    Xie, Zhaokun
    [J]. BOUNDARY VALUE PROBLEMS, 2019,
  • [6] Qualitative properties of solutions to a nonlinear time-space fractional diffusion equation
    Meiirkhan B. Borikhanov
    Michael Ruzhansky
    Berikbol T. Torebek
    [J]. Fractional Calculus and Applied Analysis, 2023, 26 : 111 - 146
  • [7] Difference numerical solutions for time-space fractional advection diffusion equation
    Fangfang Zhang
    Xiaoyang Gao
    Zhaokun Xie
    [J]. Boundary Value Problems, 2019
  • [8] Nonexistence of global solutions to a hyperbolic equation with a space-time fractional damping
    Kirane, M
    Laskri, Y
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2005, 167 (02) : 1304 - 1310
  • [9] The fractional Landweber method for identifying the space source term problem for time-space fractional diffusion equation
    Fan Yang
    Qu Pu
    Xiao-Xiao Li
    [J]. Numerical Algorithms, 2021, 87 : 1229 - 1255
  • [10] An inverse time-dependent source problem for a time-space fractional diffusion equation
    Li, Y. S.
    Wei, T.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2018, 336 : 257 - 271