Neural networks and arbitrage in the VIXA deep learning approach for the VIX

被引:9
|
作者
Joerg Osterrieder
Daniel Kucharczyk
Silas Rudolf
Daniel Wittwer
机构
[1] Zurich University of Applied Sciences,School of Engineering
[2] Wroclaw University of Science and Technology,Faculty of Pure and Applied Mathematics, Hugo Steinhaus Center
[3] Nexoya Ltd.,undefined
[4] AGCO International GmbH,undefined
来源
Digital Finance | 2020年 / 2卷 / 1-2期
关键词
VIX; SPX; Neural network; LSTM; Deep learning; Arbitrage; Market manipulation; Random forests; A00; C00; G00;
D O I
10.1007/s42521-020-00026-y
中图分类号
学科分类号
摘要
The Chicago Board Options Exchange Volatility Index (VIX) is considered by many market participants as a common measure of market risk and investors’ sentiment, representing the market’s expectation of the 30-day-ahead looking implied volatility obtained from real-time prices of options on the S&P 500 index. While smaller deviations between implied and realized volatility are a well-known stylized fact of financial markets, large, time-varying differences are also frequently observed throughout the day. Furthermore, substantial deviations between the VIX and its futures might lead to arbitrage opportunities on the VIX market. Arbitrage is hard to exploit as the potential strategy to exploit it requires buying several hundred, mostly illiquid, out-of-the-money (put and call) options on the S&P 500 index. This paper discusses a novel approach to predicting the VIX on an intraday scale by using just a subset of the most liquid options. To the best of the authors’ knowledge, this the first paper, that describes a new methodology on how to predict the VIX (to potentially exploit arbitrage opportunities using VIX futures) using most recently developed machine learning models to intraday data of S&P 500 options and the VIX. The presented results are supposed to shed more light on the underlying dynamics in the options markets, help other investors to better understand the market and support regulators to investigate market inefficiencies.
引用
收藏
页码:97 / 115
页数:18
相关论文
共 50 条
  • [21] Artificial neural networks and deep learning
    Geubbelmans, Melvin
    Rousseau, Axel-Jan
    Burzykowski, Tomasz
    Valkenborg, Dirk
    AMERICAN JOURNAL OF ORTHODONTICS AND DENTOFACIAL ORTHOPEDICS, 2024, 165 (02) : 248 - 251
  • [22] Shortcut learning in deep neural networks
    Robert Geirhos
    Jörn-Henrik Jacobsen
    Claudio Michaelis
    Richard Zemel
    Wieland Brendel
    Matthias Bethge
    Felix A. Wichmann
    Nature Machine Intelligence, 2020, 2 : 665 - 673
  • [23] Fast learning in Deep Neural Networks
    Chandra, B.
    Sharma, Rajesh K.
    NEUROCOMPUTING, 2016, 171 : 1205 - 1215
  • [24] Deep associative learning for neural networks
    Liu, Jia
    Zhang, Wenhua
    Liu, Fang
    Xiao, Liang
    NEUROCOMPUTING, 2021, 443 (443) : 222 - 234
  • [25] Collaborative Learning for Deep Neural Networks
    Song, Guocong
    Chai, Wei
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [26] Big learning and deep neural networks
    Montavon, Grégoire
    Müller, Klaus-Robert
    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2012, 7700 LECTURE NO : 419 - 420
  • [27] Multiplierless Neural Networks for Deep Learning
    Banduka, Maja Lutovac
    Lutovac, Miroslav
    2024 13TH MEDITERRANEAN CONFERENCE ON EMBEDDED COMPUTING, MECO 2024, 2024, : 262 - 265
  • [28] Shortcut learning in deep neural networks
    Geirhos, Robert
    Jacobsen, Joern-Henrik
    Michaelis, Claudio
    Zemel, Richard
    Brendel, Wieland
    Bethge, Matthias
    Wichmann, Felix A.
    NATURE MACHINE INTELLIGENCE, 2020, 2 (11) : 665 - 673
  • [29] Deep Learning Neural Networks and Bayesian Neural Networks in Data Analysis
    Chernoded, Andrey
    Dudko, Lev
    Myagkov, Igor
    Volkov, Petr
    XXIII INTERNATIONAL WORKSHOP HIGH ENERGY PHYSICS AND QUANTUM FIELD THEORY (QFTHEP 2017), 2017, 158
  • [30] Detecting Data-Driven Robust Statistical Arbitrage Strategies with Deep Neural Networks
    Neufeld, Ariel
    Sester, Julian
    Yin, Daiying
    SIAM JOURNAL ON FINANCIAL MATHEMATICS, 2024, 15 (02): : 436 - 472