Multiplierless Neural Networks for Deep Learning

被引:0
|
作者
Banduka, Maja Lutovac [1 ]
Lutovac, Miroslav [2 ]
机构
[1] RT RK, Comp Based Syst, Belgrade, Serbia
[2] Acad Engn Sci Serbia, Belgrade, Serbia
关键词
symbolic analysis; sensitivity; probability;
D O I
10.1109/MECO62516.2024.10577925
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
The paper describes the efficient implementation of neural networks based on symbolic analysis. The main advantage is the reduction of processing latency by replacing general-purpose multipliers with a small number of summing components.
引用
收藏
页码:262 / 265
页数:4
相关论文
共 50 条
  • [1] Multiplierless digital learning algorithm for cellular neural networks
    Perfetti, R
    Costantini, G
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 2001, 48 (05): : 630 - 635
  • [2] Multiplierless neural networks for application to digital video
    Cavanagh, M
    Jain, VK
    [J]. 1996 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, CONFERENCE PROCEEDINGS, VOLS 1-6, 1996, : 3414 - 3417
  • [3] Online Deep Learning: Learning Deep Neural Networks on the Fly
    Sahoo, Doyen
    Pham, Quang
    Lu, Jing
    Hoi, Steven C. H.
    [J]. PROCEEDINGS OF THE TWENTY-SEVENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2018, : 2660 - 2666
  • [4] Learning with Deep Photonic Neural Networks
    Leelar, Bhawani Shankar
    Shivaleela, E. S.
    Srinivas, T.
    [J]. 2017 IEEE WORKSHOP ON RECENT ADVANCES IN PHOTONICS (WRAP), 2017,
  • [5] Deep Learning with Random Neural Networks
    Gelenbe, Erol
    Yin, Yongha
    [J]. PROCEEDINGS OF SAI INTELLIGENT SYSTEMS CONFERENCE (INTELLISYS) 2016, VOL 2, 2018, 16 : 450 - 462
  • [6] Deep Learning with Random Neural Networks
    Gelenbe, Erol
    Yin, Yongha
    [J]. 2016 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2016, : 1633 - 1638
  • [7] Deep learning in spiking neural networks
    Tavanaei, Amirhossein
    Ghodrati, Masoud
    Kheradpisheh, Saeed Reza
    Masquelier, Timothee
    Maida, Anthony
    [J]. NEURAL NETWORKS, 2019, 111 : 47 - 63
  • [8] Deep learning in neural networks: An overview
    Schmidhuber, Juergen
    [J]. NEURAL NETWORKS, 2015, 61 : 85 - 117
  • [9] Artificial neural networks and deep learning
    Geubbelmans, Melvin
    Rousseau, Axel-Jan
    Burzykowski, Tomasz
    Valkenborg, Dirk
    [J]. AMERICAN JOURNAL OF ORTHODONTICS AND DENTOFACIAL ORTHOPEDICS, 2024, 165 (02) : 248 - 251
  • [10] Shortcut learning in deep neural networks
    Robert Geirhos
    Jörn-Henrik Jacobsen
    Claudio Michaelis
    Richard Zemel
    Wieland Brendel
    Matthias Bethge
    Felix A. Wichmann
    [J]. Nature Machine Intelligence, 2020, 2 : 665 - 673