Device-free cross location activity recognition via semi-supervised deep learning

被引:0
|
作者
Rui Zhou
Ziyuan Gong
Kai Tang
Bao Zhou
Yu Cheng
机构
[1] University of Electronic Science and Technology of China,
来源
关键词
Bidirectional long short term memory (BLSTM); Channel state information (CSI); Cross location activity recognition; Pseudo labeling; Semi-supervised deep learning;
D O I
暂无
中图分类号
学科分类号
摘要
Human activity recognition plays an important role in a variety of daily applications. There has been tremendous work on human activity recognition based on WiFi channel state information (CSI). Although achieving reasonable performance in certain cases, they are yet faced with a major challenge: location dependence. An activity recognition model trained at one location does not perform properly at other locations, because the human location also has significant influence on WiFi signal propagation. In this paper, we aim to solve the location dependence problem of CSI-based human activity recognition and propose a device-free cross location activity recognition (CLAR) method via semi-supervised deep learning. We regard the locations with labeled activity samples as the source domains and the locations with unlabeled activity samples as the target domains. By exploiting pseudo labeling and feature mapping, CLAR trains an activity recognition model working across the source and the target domains as well as the unseen domains which have no training samples. CLAR first extracts the trend component from the activity samples by Singular Spectrum Analysis (SSA), then annotates the unlabeled samples with the pseudo labels through a dual-score multi-classifier labeling model. The activity recognition model is trained using the labeled samples from the source domains and the pseudo-labeled samples from the target domains. Both the labeling and the recognition models are based on Bidirectional Long Short Term Memory (BLSTM). Evaluations in real-world environments demonstrate the effectiveness and generalization of the method CLAR, which performs well for both the source and the target domains, and generalizes well to the unseen domains.
引用
收藏
页码:10189 / 10203
页数:14
相关论文
共 50 条
  • [21] FMixCutMatch for semi-supervised deep learning
    Wei, Xiang
    Wei, Xiaotao
    Kong, Xiangyuan
    Lu, Siyang
    Xing, Weiwei
    Lu, Wei
    Neural Networks, 2021, 133 : 166 - 176
  • [22] Semi-supervised Deep Learning with Memory
    Chen, Yanbei
    Zhu, Xiatian
    Gong, Shaogang
    COMPUTER VISION - ECCV 2018, PT I, 2018, 11205 : 275 - 291
  • [23] A Survey on Deep Semi-Supervised Learning
    Yang, Xiangli
    Song, Zixing
    King, Irwin
    Xu, Zenglin
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (09) : 8934 - 8954
  • [24] FMixCutMatch for semi-supervised deep learning
    Wei, Xiang
    Wei, Xiaotao
    Kong, Xiangyuan
    Lu, Siyang
    Xing, Weiwei
    Lu, Wei
    NEURAL NETWORKS, 2021, 133 : 166 - 176
  • [25] True Detect: Deep Learning-based Device-Free Activity Recognition using WiFi
    Sulaiman, Muhammad
    Hassan, Syed Ali
    Jung, Haejoon
    2020 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE WORKSHOPS (WCNCW), 2020,
  • [26] Semi-supervised Learning of Deep Difference Features for Facial Expression Recognition
    Xu, Can
    Xu, Ruyi
    Chen, Jingying
    Liu, Leyuan
    PATTERN RECOGNITION AND COMPUTER VISION, PT III, 2018, 11258 : 245 - 254
  • [27] Deep Recurrent Semi-Supervised EEG Representation Learning for Emotion Recognition
    Zhang, Guangyi
    Teinad, Ali, I
    2021 9TH INTERNATIONAL CONFERENCE ON AFFECTIVE COMPUTING AND INTELLIGENT INTERACTION (ACII), 2021,
  • [28] Device-free single-user activity recognition using diversified deep ensemble learning
    Cui, Wei
    Li, Bing
    Zhang, Le
    Chen, Zhenghua
    APPLIED SOFT COMPUTING, 2021, 102
  • [29] A Device-free Number Gesture Recognition Approach Based on Deep Learning
    Zhou, Qizhen
    Xing, Jianchun
    Li, Juelong
    Yang, Qiliang
    PROCEEDINGS OF 2016 12TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND SECURITY (CIS), 2016, : 57 - 63
  • [30] Device-free Location-independent Human Activity Recognition using Transfer Learning based on CNN
    Ding, Xue
    Jiang, Ting
    Li, Yanan
    Xue, Wenling
    Zhong, Yi
    2020 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS WORKSHOPS (ICC WORKSHOPS), 2020,