Semi-supervised Deep Learning with Memory

被引:34
|
作者
Chen, Yanbei [1 ]
Zhu, Xiatian [2 ]
Gong, Shaogang [1 ]
机构
[1] Queen Mary Univ London, London, England
[2] Vis Semant Ltd, London, England
来源
基金
“创新英国”项目;
关键词
Semi-supervised learning; Neural network with memory;
D O I
10.1007/978-3-030-01246-5_17
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We consider the semi-supervised multi-class classification problem of learning from sparse labelled and abundant unlabelled training data. To address this problem, existing semi-supervised deep learning methods often rely on the up-to-date "network-in-training" to formulate the semi-supervised learning objective. This ignores both the discriminative feature representation and the model inference uncertainty revealed by the network in the preceding learning iterations, referred to as the memory of model learning. In this work, we propose a novel Memory-Assisted Deep Neural Network (MA-DNN) capable of exploiting the memory of model learning to enable semi-supervised learning. Specifically, we introduce a memory mechanism into the network training process as an assimilation-accommodation interaction between the network and an external memory module. Experiments demonstrate the advantages of the proposed MA-DNN model over the state-of-the-art semi-supervised deep learning methods on three image classification benchmark datasets: SVHN, CIFAR10, and CIFAR100.
引用
收藏
页码:275 / 291
页数:17
相关论文
共 50 条
  • [1] Deep Semi-Supervised Learning
    Hailat, Zeyad
    Komarichev, Artem
    Chen, Xue-Wen
    [J]. 2018 24TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2018, : 2154 - 2159
  • [2] FMixCutMatch for semi-supervised deep learning
    Wei, Xiang
    Wei, Xiaotao
    Kong, Xiangyuan
    Lu, Siyang
    Xing, Weiwei
    Lu, Wei
    [J]. Neural Networks, 2021, 133 : 166 - 176
  • [3] A Survey on Deep Semi-Supervised Learning
    Yang, Xiangli
    Song, Zixing
    King, Irwin
    Xu, Zenglin
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (09) : 8934 - 8954
  • [4] FMixCutMatch for semi-supervised deep learning
    Wei, Xiang
    Wei, Xiaotao
    Kong, Xiangyuan
    Lu, Siyang
    Xing, Weiwei
    Lu, Wei
    [J]. NEURAL NETWORKS, 2021, 133 : 166 - 176
  • [5] A review of various semi-supervised learning models with a deep learning and memory approach
    Jamshid Bagherzadeh
    Hasan Asil
    [J]. Iran Journal of Computer Science, 2019, 2 (2) : 65 - 80
  • [6] Semi-supervised Learning with Deep Generative Models
    Kingma, Diederik P.
    Rezende, Danilo J.
    Mohamed, Shakir
    Welling, Max
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 27 (NIPS 2014), 2014, 27
  • [7] Semi-supervised Clustering with Deep Metric Learning
    Li, Xiaocui
    Yin, Hongzhi
    Zhou, Ke
    Chen, Hongxu
    Sadiq, Shazia
    Zhou, Xiaofang
    [J]. DATABASE SYSTEMS FOR ADVANCED APPLICATIONS, 2019, 11448 : 383 - 386
  • [8] Semi-Supervised Deep Learning for Multiplex Networks
    Mitra, Anasua
    Vijayan, Priyesh
    Sanasam, Ranbir
    Goswami, Diganta
    Parthasarathy, Srinivasan
    Ravindran, Balaraman
    [J]. KDD '21: PROCEEDINGS OF THE 27TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2021, : 1234 - 1244
  • [9] Deep Bayesian Active Semi-Supervised Learning
    Rottmann, Matthias
    Kahl, Karsten
    Gottschalk, Hanno
    [J]. 2018 17TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA), 2018, : 158 - 164
  • [10] Deep learning via semi-supervised embedding
    Weston, Jason
    Ratle, Frédéric
    Mobahi, Hossein
    Collobert, Ronan
    [J]. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2012, 7700 LECTURE NO : 639 - 655