A finite volume scheme for convection–diffusion equations with nonlinear diffusion derived from the Scharfetter–Gummel scheme

被引:1
|
作者
Marianne Bessemoulin-Chatard
机构
[1] Université Blaise Pascal,Laboratoire de Mathématiques UMR 6620, CNRS
来源
Numerische Mathematik | 2012年 / 121卷
关键词
65M12; 82D37;
D O I
暂无
中图分类号
学科分类号
摘要
We propose a finite volume scheme for convection–diffusion equations with nonlinear diffusion. Such equations arise in numerous physical contexts. We will particularly focus on the drift-diffusion system for semiconductors and the porous media equation. In these two cases, it is shown that the transient solution converges to a steady-state solution as t tends to infinity. The introduced scheme is an extension of the Scharfetter–Gummel scheme for nonlinear diffusion. It remains valid in the degenerate case and preserves steady-states. We prove the convergence of the scheme in the nondegenerate case. Finally, we present some numerical simulations applied to the two physical models introduced and we underline the efficiency of the scheme to preserve long-time behavior of the solutions.
引用
收藏
页码:637 / 670
页数:33
相关论文
共 50 条
  • [41] A strong positivity-preserving finite volume scheme for convection-diffusion equations on tetrahedral meshes
    Zhao, Fei
    Sheng, Zhiqiang
    Yuan, Guangwei
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2023, 103 (05):
  • [42] A finite volume scheme for boundary-driven convection-diffusion equations with relative entropy structure
    Filbet, Francis
    Herda, Maxime
    NUMERISCHE MATHEMATIK, 2017, 137 (03) : 535 - 577
  • [43] Enhanced positive vertex-centered finite volume scheme for anisotropic convection-diffusion equations
    Quenjel, El Houssaine
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2020, 54 (02): : 591 - 618
  • [44] A Monotone Finite Volume Scheme with Second Order Accuracy for Convection-Diffusion Equations on Deformed Meshes
    Lan, Bin
    Sheng, Zhiqiang
    Yuan, Guangwei
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2018, 24 (05) : 1455 - 1476
  • [45] AN EXTENDED SCHARFETTER-GUMMEL SCHEME FOR HIGH-ORDER MOMENT EQUATIONS
    GEURTS, BJ
    COMPEL-THE INTERNATIONAL JOURNAL FOR COMPUTATION AND MATHEMATICS IN ELECTRICAL AND ELECTRONIC ENGINEERING, 1991, 10 (03) : 179 - 194
  • [46] Analysis of accuracy of a finite volume scheme for diffusion equations on distorted meshes
    Yuan, Guangwei
    Sheng, Zhiqiang
    JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 224 (02) : 1170 - 1189
  • [47] HYPOCOERCIVITY AND DIFFUSION LIMIT OF A FINITE VOLUME SCHEME FOR LINEAR KINETIC EQUATIONS
    Bessemoulin-Chatard, Marianne
    Herda, Maxime
    Rey, Thomas
    MATHEMATICS OF COMPUTATION, 2020, 89 (323) : 1093 - 1133
  • [48] A Conservative Finite Volume Scheme Preserving Maximum Principle for Diffusion Equations
    Yu, Yunlong
    Yuan, Guangwei
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2016 (ICNAAM-2016), 2017, 1863
  • [49] A monotone finite volume element scheme for diffusion equations on triangular grids ®
    Nie, Cunyun
    Yu, Haiyuan
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2022, 105 : 1 - 12
  • [50] IIM-based ADI finite difference scheme for nonlinear convection-diffusion equations with interfaces
    Liu, Jiankang
    Zheng, Zhoushun
    APPLIED MATHEMATICAL MODELLING, 2013, 37 (03) : 1196 - 1207