A finite volume scheme for convection–diffusion equations with nonlinear diffusion derived from the Scharfetter–Gummel scheme

被引:1
|
作者
Marianne Bessemoulin-Chatard
机构
[1] Université Blaise Pascal,Laboratoire de Mathématiques UMR 6620, CNRS
来源
Numerische Mathematik | 2012年 / 121卷
关键词
65M12; 82D37;
D O I
暂无
中图分类号
学科分类号
摘要
We propose a finite volume scheme for convection–diffusion equations with nonlinear diffusion. Such equations arise in numerous physical contexts. We will particularly focus on the drift-diffusion system for semiconductors and the porous media equation. In these two cases, it is shown that the transient solution converges to a steady-state solution as t tends to infinity. The introduced scheme is an extension of the Scharfetter–Gummel scheme for nonlinear diffusion. It remains valid in the degenerate case and preserves steady-states. We prove the convergence of the scheme in the nondegenerate case. Finally, we present some numerical simulations applied to the two physical models introduced and we underline the efficiency of the scheme to preserve long-time behavior of the solutions.
引用
收藏
页码:637 / 670
页数:33
相关论文
共 50 条
  • [21] A symmetric characteristic finite volume element scheme for nonlinear convection-diffusion problems
    Yang, Min
    Yuan, Yi-rang
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2008, 24 (01): : 41 - 54
  • [22] A finite volume scheme for unsteady linear and nonlinear convection-diffusion-reaction problems
    Xu, Mingtian
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2022, 139
  • [23] A monotone finite element scheme for convection-diffusion equations
    Xu, JC
    Zikatanov, L
    MATHEMATICS OF COMPUTATION, 1999, 68 (228) : 1429 - 1446
  • [24] Modified lattice Boltzmann scheme for nonlinear convection diffusion equations
    Xiang, Xiuqiao
    Wang, Zhenghua
    Shi, Baochang
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (06) : 2415 - 2425
  • [25] Nonlinear Finite Volume Scheme Preserving Positivity for 2D Convection-Diffusion Equations on Polygonal Meshes
    Lan, Bin
    Dong, Jianqiang
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2020, 2020
  • [26] Numerical Analysis of a Nonlinear Free-Energy Diminishing Discrete Duality Finite Volume Scheme for Convection Diffusion Equations
    Cances, Clement
    Chainais-Hillairet, Claire
    Krell, Stella
    COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2018, 18 (03) : 407 - 432
  • [27] MIXED FINITE-ELEMENT METHODS AND SCHARFETTER-GUMMEL SCHEME
    BREZZI, F
    MARINI, LD
    PIETRA, P
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1987, 305 (13): : 599 - 604
  • [28] A finite volume scheme for boundary-driven convection–diffusion equations with relative entropy structure
    Francis Filbet
    Maxime Herda
    Numerische Mathematik, 2017, 137 : 535 - 577
  • [29] A finite volume scheme preserving extremum principle for convection-diffusion equations on polygonal meshes
    Zhang, Qi
    Sheng, Zhiqiang
    Yuan, Guangwei
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2017, 84 (10) : 616 - 632
  • [30] A Finite Volume Scheme for Three-Dimensional Diffusion Equations
    Lai, Xiang
    Sheng, Zhigiang
    Yuan, Guangwei
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2015, 18 (03) : 650 - 672