Variational theory for a single polyelectrolyte chain

被引:0
|
作者
R.R. Netz
H. Orland
机构
[1] Service de Physique Théorique,
[2] CEA-Saclay,undefined
[3] 91191 Gif-sur-Yvette,undefined
[4] France,undefined
[5] Max-Planck-Institut für Kolloid- und Grenzflächenforschung,undefined
[6] Kantstr. 55,undefined
[7] 14513 Teltow,undefined
[8] Germany,undefined
关键词
PACS. 36.20.-r Macromolecules and polymer molecules - 61.25.Hq Macromolecular and polymer solutions; polymer melts; swelling - 87.15.-v Molecular biophysics;
D O I
暂无
中图分类号
学科分类号
摘要
Variational methods are applied to a single polyelectrolyte chain. The polymer is modeled as a Gaussian chain with screened electrostatic repulsion between all monomers. As a variational Hamiltonian, the most general Gaussian kernel, including the possibility of a classical or mean polymer path, is employed. The resulting self-consistent equations are systematically solved both for large and small monomer-monomer separations along the chain. In the absence of screening, the polymer is stretched on average. It is described by a straight classical path with Gaussian fluctuations around it. If the electrostatic repulsion is screened, the polymer is isotropically swollen for large separations, and for small separations the polymer correlation function is calculated as an analytic expansion in terms of the monomer-monomer separation along the chain. The electrostatic persistence length and the electrostatic blobsize are inferred from the crossover between distinct scaling ranges. We perform a global analysis of the scaling behavior as a function of the screening length \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} and electrostatic interaction strength \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}is the Bjerrum length and A is the distance of charges along the polymer chain. We find three different scaling regimes. i) A Gaussian-persistent regime with Gaussian behavior at small, persistent behavior at intermediate, and isotropically swollen behavior at large length scales. This regime occurs for weakly charged polymers and only for intermediate values of the screening length. The electrostatic persistence length \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} is defined as the crossover length between the persistent and the asymptotically swollen behavior and is given by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} and thus disagrees with previous (restricted) variational treatments which predict a linear dependence on the screening length \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}.ii) A Gaussian regime with Gaussian behavior at small and isotropically swollen behavior at large length scales. This regime occurs for weakly charged polymers and/or strong screening, and the electrostatic repulsion between monomers only leads to subfluent corrections to Gaussian scaling at small separations. The concept of a persistence length is without meaning in this regime. iii) A persistent regime , where the chain resembles a stretched rod on intermediate and small scales. Here the persistence length is given by the original Odijk prediction, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}, if the overstretching of the chain is avoided. We also investigate the effects of a finite polymer length and of an additional excluded-volume interaction, which modify the resultant scaling behavior. Applications to experiments and computer simulations are discussed.
引用
收藏
页码:81 / 98
页数:17
相关论文
共 50 条
  • [41] Theory of polyelectrolyte complexes
    Muthukumar, Murugappan
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2011, 242
  • [42] Single Molecule Tracking of a Semiflexible Polyelectrolyte Chain in Solvent Under Uniform Electroosmotic Flows
    Choung, Sunghun
    Chun, Myung-Suk
    Kim, Chongyoup
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2011, 59 (04) : 2847 - 2854
  • [43] Folding transition of a single semiflexible polyelectrolyte chain through toroidal bundling of loop structures
    Iwaki, Takafumi
    Makita, Naoko
    Yoshikawa, Kenichi
    JOURNAL OF CHEMICAL PHYSICS, 2008, 129 (06):
  • [44] Rotational relaxation time of polyelectrolyte xanthan chain via single molecule tracking method
    Jeong Yong Lee
    Hyun Wook Jung
    Jae Chun Hyun
    Korea-Australia Rheology Journal, 2012, 24 : 333 - 337
  • [45] Conformation and diffusion of a single polyelectrolyte chain in confined spaces of nano/microchannels: Simulation and experiment
    Chun, Myung-Suk
    Lee, Duck-Eui
    Kim, Chongyoup
    XVTH INTERNATIONAL CONGRESS ON RHEOLOGY - THE SOCIETY OF RHEOLOGY 80TH ANNUAL MEETING, PTS 1 AND 2, 2008, 1027 : 965 - +
  • [46] Rotational relaxation time of polyelectrolyte xanthan chain via single molecule tracking method
    Lee, Jeong Yong
    Jung, Hyun Wook
    Hyun, Jae Chun
    KOREA-AUSTRALIA RHEOLOGY JOURNAL, 2012, 24 (04) : 333 - 337
  • [47] THE THEORY OF A POLYELECTROLYTE BRUSH IMMERSED IN A SOLUTION OF MOBILE POLYELECTROLYTE
    ZHULINA, EB
    BORISOV, OV
    BIRSHTEIN, TM
    JOURNAL OF PHYSICS-CONDENSED MATTER, 1994, 6 : A317 - A322
  • [48] ADSORPTION OF A POLYELECTROLYTE CHAIN TO A CHARGED SURFACE
    MUTHUKUMAR, M
    JOURNAL OF CHEMICAL PHYSICS, 1987, 86 (12): : 7230 - 7235
  • [49] Effect of chain stiffness on polyelectrolyte condensation
    Khan, MO
    Chan, DYC
    MACROMOLECULES, 2005, 38 (07) : 3017 - 3025
  • [50] Behaviors of Single Polyelectrolyte Chain at Nano-Corrugated Interfaces Studied by Brownian Dynamics Simulation
    Zhang, Yong
    Zhang, Yuping
    Xiao, Zhongdang
    NANOSCIENCE AND NANOTECHNOLOGY LETTERS, 2013, 5 (02) : 116 - 121