Variational theory for a single polyelectrolyte chain

被引:0
|
作者
R.R. Netz
H. Orland
机构
[1] Service de Physique Théorique,
[2] CEA-Saclay,undefined
[3] 91191 Gif-sur-Yvette,undefined
[4] France,undefined
[5] Max-Planck-Institut für Kolloid- und Grenzflächenforschung,undefined
[6] Kantstr. 55,undefined
[7] 14513 Teltow,undefined
[8] Germany,undefined
关键词
PACS. 36.20.-r Macromolecules and polymer molecules - 61.25.Hq Macromolecular and polymer solutions; polymer melts; swelling - 87.15.-v Molecular biophysics;
D O I
暂无
中图分类号
学科分类号
摘要
Variational methods are applied to a single polyelectrolyte chain. The polymer is modeled as a Gaussian chain with screened electrostatic repulsion between all monomers. As a variational Hamiltonian, the most general Gaussian kernel, including the possibility of a classical or mean polymer path, is employed. The resulting self-consistent equations are systematically solved both for large and small monomer-monomer separations along the chain. In the absence of screening, the polymer is stretched on average. It is described by a straight classical path with Gaussian fluctuations around it. If the electrostatic repulsion is screened, the polymer is isotropically swollen for large separations, and for small separations the polymer correlation function is calculated as an analytic expansion in terms of the monomer-monomer separation along the chain. The electrostatic persistence length and the electrostatic blobsize are inferred from the crossover between distinct scaling ranges. We perform a global analysis of the scaling behavior as a function of the screening length \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} and electrostatic interaction strength \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}is the Bjerrum length and A is the distance of charges along the polymer chain. We find three different scaling regimes. i) A Gaussian-persistent regime with Gaussian behavior at small, persistent behavior at intermediate, and isotropically swollen behavior at large length scales. This regime occurs for weakly charged polymers and only for intermediate values of the screening length. The electrostatic persistence length \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} is defined as the crossover length between the persistent and the asymptotically swollen behavior and is given by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} and thus disagrees with previous (restricted) variational treatments which predict a linear dependence on the screening length \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}.ii) A Gaussian regime with Gaussian behavior at small and isotropically swollen behavior at large length scales. This regime occurs for weakly charged polymers and/or strong screening, and the electrostatic repulsion between monomers only leads to subfluent corrections to Gaussian scaling at small separations. The concept of a persistence length is without meaning in this regime. iii) A persistent regime , where the chain resembles a stretched rod on intermediate and small scales. Here the persistence length is given by the original Odijk prediction, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}, if the overstretching of the chain is avoided. We also investigate the effects of a finite polymer length and of an additional excluded-volume interaction, which modify the resultant scaling behavior. Applications to experiments and computer simulations are discussed.
引用
收藏
页码:81 / 98
页数:17
相关论文
共 50 条
  • [31] Self-consistent integral equation theory for semiflexible chain polyelectrolyte solutions
    Shew, CY
    Yethiraj, A
    JOURNAL OF CHEMICAL PHYSICS, 2000, 113 (19): : 8841 - 8847
  • [32] Self-consistent field theory of polyelectrolyte brushes with finite chain extensibility
    Lebedeva, Inna O.
    Zhulina, Ekaterina B.
    Borisov, Oleg V.
    JOURNAL OF CHEMICAL PHYSICS, 2017, 146 (21):
  • [33] Size, shape, and diffusivity of a single Debye-Huckel polyelectrolyte chain in solution
    Soysa, W. Chamath
    Dueweg, B.
    Prakash, J. Ravi
    JOURNAL OF CHEMICAL PHYSICS, 2015, 143 (06):
  • [34] Single chain polyelectrolyte conformation 1 - Influence of the spatial dimension and ionic strength
    Irurzun, IM
    Matteo, CL
    MACROMOLECULAR THEORY AND SIMULATIONS, 2001, 10 (04) : 237 - 243
  • [35] On the formation of rings-on-a-string conformations in a single polyelectrolyte chain: A possible scenario
    Sakaue, Takahiro
    Yoshikawa, Kenichi
    JOURNAL OF CHEMICAL PHYSICS, 2006, 125 (07):
  • [36] Reentrant Variation of Single-Chain Elasticity of Polyelectrolyte Induced by Monovalent Salt
    Yu, Miao
    Qian, Lu
    Cui, Shuxun
    JOURNAL OF PHYSICAL CHEMISTRY B, 2017, 121 (16): : 4257 - 4264
  • [38] CONFIGURATION OF A POLYELECTROLYTE CHAIN IN SOLUTION
    KRIEGER, IM
    JOURNAL OF CHEMICAL PHYSICS, 1957, 26 (01): : 1 - 4
  • [39] Theory of polyelectrolyte dendrigrafts
    Borisov, Oleg, V
    Shavykin, Oleg, V
    Zhulina, Ekaterina B.
    COLLOID AND POLYMER SCIENCE, 2020, 298 (07) : 951 - 959
  • [40] Theory of polyelectrolyte dendrigrafts
    Oleg V. Borisov
    Oleg V. Shavykin
    Ekaterina B. Zhulina
    Colloid and Polymer Science, 2020, 298 : 951 - 959