A Reeb vector field satisfies the Kupka–Smale condition when all its closed orbits are non-degenerate, and the stable and unstable manifolds of its hyperbolic closed orbits intersect transversely. We show that, on a closed 3-manifold, any Reeb vector field satisfying the Kupka–Smale condition admits a Birkhoff section. In particular, this implies that the Reeb vector field of a C∞\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$C^\infty $$\end{document}-generic contact form on a closed 3-manifold admits a Birkhoff section, and that the geodesic vector field of a C∞\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$C^\infty $$\end{document}-generic Riemannian metric on a closed surface admits a Birkhoff section.
机构:
Inst Math Bourgogne, CNRS, UMR 5584, 9 Ave Alain Savary, F-21000 Dijon, FranceInst Math Bourgogne, CNRS, UMR 5584, 9 Ave Alain Savary, F-21000 Dijon, France
Bonatti, Ch.
Grines, V. Z.
论文数: 0引用数: 0
h-index: 0
机构:
Natl Res Univ, Higher Sch Econ, Ul Myasnitskaya 20, Moscow 101000, RussiaInst Math Bourgogne, CNRS, UMR 5584, 9 Ave Alain Savary, F-21000 Dijon, France
Grines, V. Z.
Pochinka, O. V.
论文数: 0引用数: 0
h-index: 0
机构:
Natl Res Univ, Higher Sch Econ, Ul Myasnitskaya 20, Moscow 101000, RussiaInst Math Bourgogne, CNRS, UMR 5584, 9 Ave Alain Savary, F-21000 Dijon, France