Let (M, xi) be a compact contact 3-manifold and assume that there exists a contact form alpha(0) on (M, xi) whose Reeb flow is Anosov. We show this implies that every Reeb flow on (M, xi) has positive topological entropy, answering a question raised in [2]. Our argument builds on previous work of the author [2] and recent work of Barthelme and Fenley [4]. This result combined with the work of Foulon and Hasselblatt [13] is then used to obtain the first examples of hyperbolic contact 3-manifolds on which every Reeb flow has positive topological entropy.
机构:
Nantes Univ, CNRS, Lab Math Jean Leray, LMJL, F-44000 Nantes, FranceNantes Univ, CNRS, Lab Math Jean Leray, LMJL, F-44000 Nantes, France
Colin, Vincent
Dehornoy, Pierre
论文数: 0引用数: 0
h-index: 0
机构:
Aix Marseille Univ, CNRS, I2M, F-13284 Marseille, FranceNantes Univ, CNRS, Lab Math Jean Leray, LMJL, F-44000 Nantes, France
Dehornoy, Pierre
Hryniewicz, Umberto
论文数: 0引用数: 0
h-index: 0
机构:
Rhein Westfal TH Aachen, Chair Geometry & Anal, Jakobstr 2, D-52074 Aachen, GermanyNantes Univ, CNRS, Lab Math Jean Leray, LMJL, F-44000 Nantes, France
Hryniewicz, Umberto
Rechtman, Ana
论文数: 0引用数: 0
h-index: 0
机构:
Inst Univ France IUF, 1 rue Descartes, F-38610 Paris, France
Inst Univ France IUF, 1 rue Descartes, F-75231 Paris, FranceNantes Univ, CNRS, Lab Math Jean Leray, LMJL, F-44000 Nantes, France