C1 Quintic Splines on Type-4 Tetrahedral Partitions

被引:0
|
作者
Larry L. Schumaker
Tatyana Sorokina
机构
[1] Vanderbilt University,Center for Constructive Approximation, Department of Mathematics
来源
关键词
trivariate splines; tetrahedral partitions;
D O I
暂无
中图分类号
学科分类号
摘要
Starting with a partition of a rectangular box into subboxes, it is shown how to construct a natural tetrahedral (type-4) partition and associated trivariate C1 quintic polynomial spline spaces with a variety of useful properties, including stable local bases and full approximation power. It is also shown how the spaces can be used to solve certain Hermite and Lagrange interpolation problems.
引用
收藏
页码:421 / 444
页数:23
相关论文
共 50 条
  • [41] C1 Bicubic Splines over General T-meshes
    Li, Xin
    Deng, Jiansong
    Chen, Falai
    [J]. 2009 11TH IEEE INTERNATIONAL CONFERENCE ON COMPUTER-AIDED DESIGN AND COMPUTER GRAPHICS, PROCEEDINGS, 2009, : 92 - 95
  • [42] A C1 TETRAHEDRAL FINITE ELEMENT WITHOUT EDGE DEGREES OF FREEDOM
    Walkington, Noel J.
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2014, 52 (01) : 330 - 342
  • [43] INTERPOLATION SCHEME BY C1 CUBIC-SPLINES ON A NONUNIFORM TYPE-2 TRIANGULATION OF A RECTANGULAR DOMAIN
    JEEAWOCKZEDEK, F
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1992, 314 (05): : 413 - 418
  • [44] A Cox-de Boor-type recurrence relation for C1 multi-degree splines
    Beccari, Carolina Vittoria
    Casciola, Giulio
    [J]. COMPUTER AIDED GEOMETRIC DESIGN, 2019, 75
  • [45] On Whitney-type extension theorems on Banach spaces for C1,ω,C1,+, C1,+ loc , and C1,+ B-smooth functions
    Johanis, Michal
    Krystof, Vaclav
    Zajicek, Ludek
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 532 (01)
  • [46] Adaptive methods with C1 1 splines for multi-patch surfaces and shells
    Bracco, Cesare
    Farahat, Andrea
    Giannelli, Carlotta
    Kapl, Mario
    Vazquez, Rafael
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2024, 431
  • [47] Quasi-interpolation by quadratic C1-splines on truncated octahedral partitions
    Rhein, M.
    Kalbe, T.
    [J]. COMPUTER AIDED GEOMETRIC DESIGN, 2009, 26 (08) : 825 - 841
  • [48] Local Hermite Interpolation by Bivariate C1 Cubic Splines on Checkerboard Triangulations
    Chen, Sun-Kang
    Liu, Huan-Wen
    Cui, Xiang-Zhao
    [J]. JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2012, 14 (03) : 559 - 568
  • [49] A normalized basis for condensed C1 Powell-Sabin-12 splines
    Lamnii, A.
    Lamnii, M.
    Mraoui, H.
    [J]. COMPUTER AIDED GEOMETRIC DESIGN, 2015, 34 : 5 - 20
  • [50] Surface Compression Using a Space of C1 Cubic Splines with a Hierarchical Basis
    Don Hong
    Larry L. Schumaker
    [J]. Computing, 2004, 72 : 79 - 92