A C1 TETRAHEDRAL FINITE ELEMENT WITHOUT EDGE DEGREES OF FREEDOM

被引:5
|
作者
Walkington, Noel J. [1 ]
机构
[1] Carnegie Mellon Univ, Dept Math, Pittsburgh, PA 15213 USA
基金
美国国家科学基金会;
关键词
C-1; tetrahedron; C-1 finite element; reduced finite element;
D O I
10.1137/130912013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A composite C-1 tetrahedral finite element is developed which does not have any edge degrees of freedom. This eliminates the need to associate a basis for the planes perpendicular to each edge; such a basis cannot depend continuously upon the edge orientation. The finite element space is piecewise polynomial over the four tetrahedra formed by adding the circumcenter, and their traces on each face belong to the (two-dimensional) Bell subspace.
引用
收藏
页码:330 / 342
页数:13
相关论文
共 50 条
  • [1] Tetrahedral Finite Element with Rotational Degrees of Freedom for Cosserat and Cauchy Continuum Problems
    Zhou, Xinwei
    Cusatis, Gianluca
    [J]. JOURNAL OF ENGINEERING MECHANICS, 2015, 141 (02)
  • [2] C1 macroelements in adaptive finite element methods
    Stogner, Roy H.
    Carey, Graham F.
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2007, 70 (09) : 1076 - 1095
  • [3] A new finite element method for modeling delamination propagation without additional degrees of freedom
    Yamanaka, Tadayoshi
    Heidari-Rarani, Mohammad
    Lessard, Larry
    Feret, Victor
    Hubert, Pascal
    [J]. COMPOSITE STRUCTURES, 2016, 147 : 82 - 98
  • [4] The beam finite element with five nodal degrees of freedom
    Tyukalov, Yu. Ya.
    [J]. MAGAZINE OF CIVIL ENGINEERING, 2024, 17 (04):
  • [5] A Smart Triangular Finite Element with Drilling Degrees of Freedom
    Neto, M. A.
    Leal, R. P.
    Yu, W.
    [J]. PROCEEDINGS OF THE TENTH INTERNATIONAL CONFERENCE ON COMPUTATIONAL STRUCTURES TECHNOLOGY, 2010, 93
  • [6] C1 finite element analysis in gradient enhanced continua
    Manzari, Majid T.
    Yonten, Karma
    [J]. MATHEMATICAL AND COMPUTER MODELLING, 2013, 57 (9-10) : 2519 - 2531
  • [7] A C1 finite element capable of interlaminar stress continuity
    Austin, EM
    Inman, DJ
    [J]. COMPUTERS & STRUCTURES, 2001, 79 (10) : 973 - 986
  • [8] Simple and efficient tetrahedral finite elements with rotational degrees of freedom for solid modeling
    Hua, X.
    To, C. W. S.
    [J]. JOURNAL OF COMPUTING AND INFORMATION SCIENCE IN ENGINEERING, 2007, 7 (04) : 382 - 393
  • [9] Lower order tetrahedral finite elements with rotational degrees of freedom for solid modelling
    To, Cho W. S.
    Hua, Xiao
    [J]. 27TH COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, VOL 2, PTS A AND B 2007: PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, 2008, : 91 - 99
  • [10] A highly efficient membrane finite element with drilling degrees of freedom
    Kugler, Stephan
    Fotiu, Peter A.
    Murin, Justin
    [J]. ACTA MECHANICA, 2010, 213 (3-4) : 323 - 348