A C1 TETRAHEDRAL FINITE ELEMENT WITHOUT EDGE DEGREES OF FREEDOM

被引:5
|
作者
Walkington, Noel J. [1 ]
机构
[1] Carnegie Mellon Univ, Dept Math, Pittsburgh, PA 15213 USA
基金
美国国家科学基金会;
关键词
C-1; tetrahedron; C-1 finite element; reduced finite element;
D O I
10.1137/130912013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A composite C-1 tetrahedral finite element is developed which does not have any edge degrees of freedom. This eliminates the need to associate a basis for the planes perpendicular to each edge; such a basis cannot depend continuously upon the edge orientation. The finite element space is piecewise polynomial over the four tetrahedra formed by adding the circumcenter, and their traces on each face belong to the (two-dimensional) Bell subspace.
引用
收藏
页码:330 / 342
页数:13
相关论文
共 50 条
  • [31] An asymptotically exact finite element error estimator based on C1 stress recovery
    Pomeranz, SB
    Kirk, AW
    Baker, WD
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1998, 154 (3-4) : 319 - 329
  • [32] Modelling of a borehole heat exchanger using a finite element with multiple degrees of freedom
    Woloszyn, Jerzy
    Golas, Andrzej
    [J]. GEOTHERMICS, 2013, 47 : 13 - 26
  • [33] Spontaneous anterior arch fracture of the atlas following C1 laminectomy without fusion: A report of three cases and finite element analysis
    Shimizu, Takayoshi
    Otsuki, Bungo
    Fujibayashi, Shunsuke
    Takemoto, Mitsuru
    Ito, Hideo
    Sakamoto, Takeshi
    Adachi, Taiji
    Matsuda, Shuichi
    [J]. JOURNAL OF ORTHOPAEDIC SCIENCE, 2016, 21 (03) : 306 - 315
  • [34] Local lagrange interpolation with cubic C1 splines on tetrahedral partitions
    Hecklin, Gero
    Nuernberger, Guenther
    Schumaker, Larry L.
    Zeilfelder, Frank
    [J]. JOURNAL OF APPROXIMATION THEORY, 2009, 160 (1-2) : 89 - 102
  • [35] C1 Quintic Splines on Type-4 Tetrahedral Partitions
    Larry L. Schumaker
    Tatyana Sorokina
    [J]. Advances in Computational Mathematics, 2004, 21 : 421 - 444
  • [36] C1 quintic splines on type-4 tetrahedral partitions
    Schumaker, LL
    Sorokina, T
    [J]. ADVANCES IN COMPUTATIONAL MATHEMATICS, 2004, 21 (3-4) : 421 - 444
  • [37] A C1 finite element including transverse shear and torsion warping for rectangular sandwich beams
    Ganapathi, M
    Patel, BP
    Polit, O
    Touratier, M
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1999, 45 (01) : 47 - 75
  • [38] The optimal convergence rate of a C1 finite element method for non-smooth domains
    Soane, Ana Maria
    Suri, Manil
    Rostamian, Rouben
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 233 (10) : 2711 - 2723
  • [39] Biomechanical Role of the C1 Lateral Mass Screws in Occipitoatlantoaxial Fixation A Finite Element Analysis
    Liu, Haibo
    Zhang, Baocheng
    Lei, Jianyin
    Cai, Xianhua
    Li, Zhiqiang
    Wang, Zhihua
    [J]. SPINE, 2016, 41 (22) : E1312 - E1318
  • [40] A family of C1 quadrilateral finite elements
    Kapl, Mario
    Sangalli, Giancarlo
    Takacs, Thomas
    [J]. ADVANCES IN COMPUTATIONAL MATHEMATICS, 2021, 47 (06)