An analytical framework for interpretable and generalizable single-cell data analysis

被引:0
|
作者
Jian Zhou
Olga G. Troyanskaya
机构
[1] University of Texas Southwestern Medical Center,Lyda Hill Department of Bioinformatics
[2] Princeton University,Lewis
[3] Simons Foundation,Sigler Institute for Integrative Genomics
[4] Princeton University,Flatiron Institute
来源
Nature Methods | 2021年 / 18卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The scaling of single-cell data exploratory analysis with the rapidly growing diversity and quantity of single-cell omics datasets demands more interpretable and robust data representation that is generalizable across datasets. Here, we have developed a ‘linearly interpretable’ framework that combines the interpretability and transferability of linear methods with the representational power of non-linear methods. Within this framework we introduce a data representation and visualization method, GraphDR, and a structure discovery method, StructDR, that unifies cluster, trajectory and surface estimation and enables their confidence set inference.
引用
收藏
页码:1317 / 1321
页数:4
相关论文
共 50 条
  • [1] An analytical framework for interpretable and generalizable single-cell data analysis
    Zhou, Jian
    Troyanskaya, Olga G.
    NATURE METHODS, 2021, 18 (11) : 1317 - +
  • [2] Author Correction: An analytical framework for interpretable and generalizable single-cell data analysis
    Jian Zhou
    Olga G. Troyanskaya
    Nature Methods, 2022, 19 : 370 - 370
  • [3] An analytical framework for interpretable and generalizable single-cell data analysis (vol 18, pg 1317, 2021)
    Zhou, Jian
    Troyanskaya, Olga G.
    NATURE METHODS, 2022, 19 (03) : 370 - 370
  • [4] scMoMtF: An interpretable multitask learning framework for single-cell multi-omics data analysis
    Lan, Wei
    Ling, Tongsheng
    Chen, Qingfeng
    Zheng, Ruiqing
    Li, Min
    Pan, Yi
    PLoS Computational Biology, 2024, 20 (12)
  • [5] bigSCale: an analytical framework for big-scale single-cell data
    Iacono, Giovanni
    Mereu, Elisabetta
    Guillaumet-Adkins, Amy
    Corominas, Roser
    Cusco, Ivon
    Rodriguez-Esteban, Gustavo
    Gut, Marta
    Alberto Perez-Jurado, Luis
    Gut, Ivo
    Heyn, Holger
    GENOME RESEARCH, 2018, 28 (06) : 878 - 890
  • [6] Generalizable Visualization of Mega-Scale Single-Cell Data
    Cho, Hyunghoon
    Berger, Bonnie
    Peng, Jian
    RESEARCH IN COMPUTATIONAL MOLECULAR BIOLOGY, RECOMB 2018, 2018, 10812 : 251 - 253
  • [7] Generalizable and Scalable Visualization of Single-Cell Data Using Neural Networks
    Cho, Hyunghoon
    Berger, Bonnie
    Peng, Jian
    CELL SYSTEMS, 2018, 7 (02) : 185 - +
  • [8] An interpretable framework for clustering single-cell RNA-Seq datasets
    Jesse M. Zhang
    Jue Fan
    H. Christina Fan
    David Rosenfeld
    David N. Tse
    BMC Bioinformatics, 19
  • [9] Principled and interpretable alignability testing and integration of single-cell data
    Ma, Rong
    Sun, Eric D.
    Donoho, David
    Zou, James
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2024, 121 (10)
  • [10] An interpretable framework for clustering single-cell RNA-Seq datasets
    Zhang, Jesse M.
    Fan, Jue
    Fan, Christina
    Rosenfeld, David
    Tse, David N.
    BMC BIOINFORMATICS, 2018, 19