Micro-network-based deep convolutional neural network for human activity recognition from realistic and multi-view visual data

被引:0
|
作者
Arati Kushwaha
Ashish Khare
Om Prakash
机构
[1] University of Allahabad,Department of Electronics & Communication
[2] HNB Garhwal University,Department of Computer Science & Engineering
来源
关键词
Convolutional neural network; Human activity recognition; Micro-network; Softmax classifier;
D O I
暂无
中图分类号
学科分类号
摘要
In the recent past, deep convolutional neural network (DCNN) has been used in majority of state-of-the-art methods due to its remarkable performance in number of computer vision applications. However, DCNN are computationally expensive and requires more resources as well as computational time. Also, deeper architectures are prone to overfitting problem, while small-size dataset is used. To address these limitations, we propose a simple and computationally efficient deep convolutional neural network (DCNN) architecture based on the concept multiscale processing for human activity recognition. We increased the width and depth of the network by carefully crafting the design of network, which results in improved utilization of computational resources. First, we designed a small micro-network with varying receptive field size convolutional kernels (1×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times$$\end{document}1, 3×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times$$\end{document}3, and 5×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times$$\end{document}5) for extraction of unique discriminative information of human objects having variations in object size, pose, orientation, and view. Then, the proposed DCNN architecture is designed by stacking repeated building blocks of small micro-networks with same topology. Here, we factorize the larger convolutional operation in stack of smaller convolutional operations to make the network computationally efficient. The softmax classifier is used for activity classification. Advantage of the proposed architecture over standard deep architectures is its computational efficiency and flexibility to use with both small as well as large size datasets. To evaluate the effectiveness of the proposed architecture, several extensive experiments are conducted by using publically available datasets, namely UCF sports, IXMAS, YouTube, TV-HI, HMDB51, and UCF101 datasets. The activity recognition results have shown outperformance of the proposed method over other existing state-of-the-art methods.
引用
收藏
页码:13321 / 13341
页数:20
相关论文
共 50 条
  • [21] Multi-View Image-based Vehicle Brand Recognition System with Cascaded Convolutional Neural Network
    Ahn, Namhyun
    Kang, Suk-Ju
    2019 IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS (ICCE), 2019,
  • [22] Human ear recognition based on deep convolutional neural network
    Tian Ying
    Wang Shining
    Li Wanxiang
    PROCEEDINGS OF THE 30TH CHINESE CONTROL AND DECISION CONFERENCE (2018 CCDC), 2018, : 1830 - 1835
  • [23] Human Activity Recognition From Accelerometer Data Using Convolutional Neural Network
    Lee, Song-Mi
    Yoon, Sang Min
    Cho, Heeryon
    2017 IEEE INTERNATIONAL CONFERENCE ON BIG DATA AND SMART COMPUTING (BIGCOMP), 2017, : 131 - 134
  • [24] Hierarchical multi-view aggregation network for sensor-based human activity recognition
    Zhang, Xiheng
    Wong, Yongkang
    Kankanhalli, Mohan S.
    Geng, Weidong
    PLOS ONE, 2019, 14 (09):
  • [25] Multi-View Clothing Image Searching Based on Deep Neural Network
    Fadhilla, Mutia
    Lin, Jen-Yung
    Chen, Wen-Jan
    Lin, Guo-Shiang
    2020 IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS - TAIWAN (ICCE-TAIWAN), 2020,
  • [26] Multi-View Image Denoising Using Convolutional Neural Network
    Zhou, Shiwei
    Hu, Yu-Hen
    Jiang, Hongrui
    SENSORS, 2019, 19 (11)
  • [27] Human Activity Recognition Based on Gramian Angular Field and Deep Convolutional Neural Network
    Xu, Hongji
    Li, Juan
    Yuan, Hui
    Liu, Qiang
    Fan, Shidi
    Li, Tiankuo
    Sun, Xiaojie
    IEEE ACCESS, 2020, 8 (08): : 199393 - 199405
  • [28] Sign language recognition and translation network based on multi-view data
    Ronghui Li
    Lu Meng
    Applied Intelligence, 2022, 52 : 14624 - 14638
  • [29] Method on Human Activity Recognition Based on Convolutional Neural Network
    Haibin, Zhang
    Kubota, Naoyuki
    INTELLIGENT ROBOTICS AND APPLICATIONS, ICIRA 2019, PT III, 2019, 11742 : 63 - 71
  • [30] MultiSpectralNet: Spectral Clustering Using Deep Neural Network for Multi-View Data
    Huang, Shutting
    Ota, Kaoru
    Dong, Mianxiong
    Li, Fanzhang
    IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, 2019, 6 (04) : 749 - 760