Human Activity Recognition From Accelerometer Data Using Convolutional Neural Network

被引:0
|
作者
Lee, Song-Mi [1 ]
Yoon, Sang Min [1 ]
Cho, Heeryon [1 ]
机构
[1] Kookmin Univ, Human Comp Interact Lab, Seoul, South Korea
基金
新加坡国家研究基金会;
关键词
human activity recognition; convolutional neural network; 3D accelerometer data; random forest;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We propose a one-dimensional (1D) Convolutional Neural Network (CNN)-based method for recognizing human activity using triaxial accelerometer data collected from users' smartphones. The three human activity data, walking, running, and staying still, are gathered using smartphone accelerometer sensor. The x, y, and z acceleration data are transformed into a vector magnitude data and used as the input for learning the 1D CNN. The ternary activity recognition performance of our 1D CNN-based method which showed 92.71% accuracy outperformed the baseline random forest approach of 89.10%.
引用
收藏
页码:131 / 134
页数:4
相关论文
共 50 条
  • [1] Validation of human activity recognition using a convolutional neural network on accelerometer and gyroscope data
    Hysenllari, Eni
    Ottenbacher, Joerg
    McLennan, Darren
    [J]. GERMAN JOURNAL OF EXERCISE AND SPORT RESEARCH, 2022, 52 (02) : 248 - 252
  • [2] Human Activity Recognition from Accelerometer Data with Convolutional Neural Networks
    de Aquino e Aquino, Gustavo
    Serrao, M. K.
    Costa, M. G. F.
    Costa-Filho, C. F. F.
    [J]. XXVII BRAZILIAN CONGRESS ON BIOMEDICAL ENGINEERING, CBEB 2020, 2022, : 1603 - 1610
  • [3] Real-time human activity recognition from accelerometer data using Convolutional Neural Networks
    Ignatov, Andrey
    [J]. APPLIED SOFT COMPUTING, 2018, 62 : 915 - 922
  • [4] Human Activity Recognition Using Cell Phone-Based Accelerometer and Convolutional Neural Network
    Prasad, Ashwani
    Tyagi, Amit Kumar
    Althobaiti, Maha M.
    Almulihi, Ahmed
    Mansour, Romany F.
    Mahmoud, Ayman M.
    [J]. APPLIED SCIENCES-BASEL, 2021, 11 (24):
  • [5] Human Activity Recognition from Accelerometer with Convolutional and Recurrent Neural Networks
    M. K. Serrão
    G. de A. e Aquino
    M. G. F. Costa
    Cicero Ferreira Fernandes Costa Filho
    [J]. Polytechnica, 2021, 4 (1): : 15 - 25
  • [6] Activity Recognition using Fully Convolutional Network from Smartphone Accelerometer
    Kim, Mooseop
    Jeong, Chi Yoon
    Shin, Hyung Cheol
    [J]. 2018 INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION TECHNOLOGY CONVERGENCE (ICTC), 2018, : 1482 - 1484
  • [7] Recurrent Neural Network for Human Activity Recognition in Embedded Systems Using PPG and Accelerometer Data
    Alessandrini, Michele
    Biagetti, Giorgio
    Crippa, Paolo
    Falaschetti, Laura
    Turchetti, Claudio
    [J]. ELECTRONICS, 2021, 10 (14)
  • [8] A New Motion Data Structuring for Human Activity Recognition Using Convolutional Neural Network
    Alemayoh, Tsige Tadesse
    Lee, Jae Hoon
    Okamoto, Shingo
    [J]. 2020 8TH IEEE RAS/EMBS INTERNATIONAL CONFERENCE FOR BIOMEDICAL ROBOTICS AND BIOMECHATRONICS (BIOROB), 2020, : 187 - 192
  • [9] Human Activity Recognition Using Multichannel Convolutional Neural Network
    Sikder, Niloy
    Chowdhury, Md Sanaullah
    Arif, Abu Shamim Mohammad
    Nahid, Abdullah-Al
    [J]. 2019 5TH INTERNATIONAL CONFERENCE ON ADVANCES IN ELECTRICAL ENGINEERING (ICAEE), 2019, : 560 - 565
  • [10] Convolutional Neural Networks for Human Activity Recognition using Multiple Accelerometer and Gyroscope Sensors
    Ha, Sojeong
    Choi, Seungjin
    [J]. 2016 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2016, : 381 - 388