Single-cell network biology for resolving cellular heterogeneity in human diseases

被引:0
|
作者
Junha Cha
Insuk Lee
机构
[1] Yonsei University,Department of Biotechnology, College of Life Science & Biotechnology
[2] Yonsei University College of Medicine,Department of Biomedical Systems Informatics
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Understanding cellular heterogeneity is the holy grail of biology and medicine. Cells harboring identical genomes show a wide variety of behaviors in multicellular organisms. Genetic circuits underlying cell-type identities will facilitate the understanding of the regulatory programs for differentiation and maintenance of distinct cellular states. Such a cell-type-specific gene network can be inferred from coregulatory patterns across individual cells. Conventional methods of transcriptome profiling using tissue samples provide only average signals of diverse cell types. Therefore, reconstructing gene regulatory networks for a particular cell type is not feasible with tissue-based transcriptome data. Recently, single-cell omics technology has emerged and enabled the capture of the transcriptomic landscape of every individual cell. Although single-cell gene expression studies have already opened up new avenues, network biology using single-cell transcriptome data will further accelerate our understanding of cellular heterogeneity. In this review, we provide an overview of single-cell network biology and summarize recent progress in method development for network inference from single-cell RNA sequencing (scRNA-seq) data. Then, we describe how cell-type-specific gene networks can be utilized to study regulatory programs specific to disease-associated cell types and cellular states. Moreover, with scRNA data, modeling personal or patient-specific gene networks is feasible. Therefore, we also introduce potential applications of single-cell network biology for precision medicine. We envision a rapid paradigm shift toward single-cell network analysis for systems biology in the near future.
引用
收藏
页码:1798 / 1808
页数:10
相关论文
共 50 条
  • [41] VoPo leverages cellular heterogeneity for predictive modeling of single-cell data
    Stanley, Natalie
    Stelzer, Ina A.
    Tsai, Amy S.
    Fallahzadeh, Ramin
    Ganio, Edward
    Becker, Martin
    Phongpreecha, Thanaphong
    Nassar, Huda
    Ghaemi, Sajjad
    Maric, Ivana
    Culos, Anthony
    Chang, Alan L.
    Xenochristou, Maria
    Han, Xiaoyuan
    Espinosa, Camilo
    Rumer, Kristen
    Peterson, Laura
    Verdonk, Franck
    Gaudilliere, Dyani
    Tsai, Eileen
    Feyaerts, Dorien
    Einhaus, Jakob
    Ando, Kazuo
    Wong, Ronald J.
    Obermoser, Gerlinde
    Shaw, Gary M.
    Stevenson, David K.
    Angst, Martin S.
    Gaudilliere, Brice
    Aghaeepour, Nima
    NATURE COMMUNICATIONS, 2020, 11 (01)
  • [42] Intestinal cellular heterogeneity and disease development revealed by single-cell technology
    Yalong Wang
    Wanlu Song
    Shicheng Yu
    Yuan Liu
    Ye-Guang Chen
    Cell Regeneration, 11
  • [43] Single-cell transcriptomics of murine mural cells reveals cellular heterogeneity
    Ya-Na Guan
    Yue Li
    Moom Roosan
    Qing Jing
    Science China Life Sciences, 2021, 64 : 1077 - 1086
  • [44] VoPo leverages cellular heterogeneity for predictive modeling of single-cell data
    Natalie Stanley
    Ina A. Stelzer
    Amy S. Tsai
    Ramin Fallahzadeh
    Edward Ganio
    Martin Becker
    Thanaphong Phongpreecha
    Huda Nassar
    Sajjad Ghaemi
    Ivana Maric
    Anthony Culos
    Alan L. Chang
    Maria Xenochristou
    Xiaoyuan Han
    Camilo Espinosa
    Kristen Rumer
    Laura Peterson
    Franck Verdonk
    Dyani Gaudilliere
    Eileen Tsai
    Dorien Feyaerts
    Jakob Einhaus
    Kazuo Ando
    Ronald J. Wong
    Gerlinde Obermoser
    Gary M. Shaw
    David K. Stevenson
    Martin S. Angst
    Brice Gaudilliere
    Nima Aghaeepour
    Nature Communications, 11
  • [45] Deep Profiling of Cellular Heterogeneity by Emerging Single-Cell Proteomic Technologies
    Yang, Liwei
    George, Justin
    Wang, Jun
    PROTEOMICS, 2020, 20 (13)
  • [46] scMuffin: an R package for resolving solid tumor heterogeneity from single-cell data
    Di Nanni, Noemi
    Cocola, Cinzia
    Nale, Valentina
    Piscitelli, Eleonora
    Chiodi, Alice
    Cifola, Ingrid
    Zucchi, Ileana
    Reinbold, Rolland
    Milanesi, Luciano
    Mezzelani, Alessandra
    Pelucchi, Paride
    Mosca, Ettore
    EUROPEAN JOURNAL OF HUMAN GENETICS, 2022, 30 (SUPPL 1) : 501 - 501
  • [47] Single-cell biology to decode the immune cellular composition of kidney inflammation
    Yu Zhao
    Ulf Panzer
    Stefan Bonn
    Christian F. Krebs
    Cell and Tissue Research, 2021, 385 : 435 - 443
  • [48] Single-cell biology to decode the immune cellular composition of kidney inflammation
    Zhao, Yu
    Panzer, Ulf
    Bonn, Stefan
    Krebs, Christian F.
    CELL AND TISSUE RESEARCH, 2021, 385 (02) : 435 - 443
  • [49] Single-cell transcriptional profiling of human thymic stroma uncovers novel cellular heterogeneity in the thymic medulla
    Bautista, Jhoanne L.
    Cramer, Nathan T.
    Miller, Corey N.
    Chavez, Jessica
    Berrios, David I.
    Byrnes, Lauren E.
    Germino, Joe
    Ntranos, Vasilis
    Sneddon, Julie B.
    Burt, Trevor D.
    Gardner, James M.
    Ye, Chun J.
    Anderson, Mark S.
    Parent, Audrey V.
    NATURE COMMUNICATIONS, 2021, 12 (01)
  • [50] Single-cell transcriptional profiling of human thymic stroma uncovers novel cellular heterogeneity in the thymic medulla
    Jhoanne L. Bautista
    Nathan T. Cramer
    Corey N. Miller
    Jessica Chavez
    David I. Berrios
    Lauren E. Byrnes
    Joe Germino
    Vasilis Ntranos
    Julie B. Sneddon
    Trevor D. Burt
    James M. Gardner
    Chun J. Ye
    Mark S. Anderson
    Audrey V. Parent
    Nature Communications, 12