共 50 条
Failure mechanisms of single-crystal silicon electrodes in lithium-ion batteries
被引:0
|作者:
Feifei Shi
Zhichao Song
Philip N. Ross
Gabor A. Somorjai
Robert O. Ritchie
Kyriakos Komvopoulos
机构:
[1] University of California,Department of Mechanical Engineering
[2] Lawrence Berkeley National Laboratory,Materials Sciences Division
[3] University of California,Department of Chemistry
[4] University of California,Department of Materials Science and Engineering
来源:
关键词:
D O I:
暂无
中图分类号:
学科分类号:
摘要:
Long-term durability is a major obstacle limiting the widespread use of lithium-ion batteries in heavy-duty applications and others demanding extended lifetime. As one of the root causes of the degradation of battery performance, the electrode failure mechanisms are still unknown. In this paper, we reveal the fundamental fracture mechanisms of single-crystal silicon electrodes over extended lithiation/delithiation cycles, using electrochemical testing, microstructure characterization, fracture mechanics and finite element analysis. Anisotropic lithium invasion causes crack initiation perpendicular to the electrode surface, followed by growth through the electrode thickness. The low fracture energy of the lithiated/unlithiated silicon interface provides a weak microstructural path for crack deflection, accounting for the crack patterns and delamination observed after repeated cycling. On the basis of this physical understanding, we demonstrate how electrolyte additives can heal electrode cracks and provide strategies to enhance the fracture resistance in future lithium-ion batteries from surface chemical, electrochemical and material science perspectives.
引用
收藏
相关论文