Failure mechanisms of single-crystal silicon electrodes in lithium-ion batteries

被引:0
|
作者
Feifei Shi
Zhichao Song
Philip N. Ross
Gabor A. Somorjai
Robert O. Ritchie
Kyriakos Komvopoulos
机构
[1] University of California,Department of Mechanical Engineering
[2] Lawrence Berkeley National Laboratory,Materials Sciences Division
[3] University of California,Department of Chemistry
[4] University of California,Department of Materials Science and Engineering
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Long-term durability is a major obstacle limiting the widespread use of lithium-ion batteries in heavy-duty applications and others demanding extended lifetime. As one of the root causes of the degradation of battery performance, the electrode failure mechanisms are still unknown. In this paper, we reveal the fundamental fracture mechanisms of single-crystal silicon electrodes over extended lithiation/delithiation cycles, using electrochemical testing, microstructure characterization, fracture mechanics and finite element analysis. Anisotropic lithium invasion causes crack initiation perpendicular to the electrode surface, followed by growth through the electrode thickness. The low fracture energy of the lithiated/unlithiated silicon interface provides a weak microstructural path for crack deflection, accounting for the crack patterns and delamination observed after repeated cycling. On the basis of this physical understanding, we demonstrate how electrolyte additives can heal electrode cracks and provide strategies to enhance the fracture resistance in future lithium-ion batteries from surface chemical, electrochemical and material science perspectives.
引用
收藏
相关论文
共 50 条
  • [31] Aging Mechanisms of Lithium-ion Batteries
    Seok, Jangwhan
    Lee, Wontae
    Lee, Hyunbeom
    Park, Sangbin
    Chung, Chanyou
    Hwang, Sunhyun
    Yoon, Won-Sub
    JOURNAL OF ELECTROCHEMICAL SCIENCE AND TECHNOLOGY, 2024, 15 (01) : 51 - 66
  • [32] Safety mechanisms in lithium-ion batteries
    Balakrishnan, PG
    Ramesh, R
    Kumar, TP
    JOURNAL OF POWER SOURCES, 2006, 155 (02) : 401 - 414
  • [33] Ageing mechanisms in lithium-ion batteries
    Vetter, J
    Novák, P
    Wagner, MR
    Veit, C
    Möller, KC
    Besenhard, JO
    Winter, M
    Wohlfahrt-Mehrens, M
    Vogler, C
    Hammouche, A
    JOURNAL OF POWER SOURCES, 2005, 147 (1-2) : 269 - 281
  • [34] Lithium-Ion Batteries Aging Mechanisms
    Sgroi, Mauro Francesco
    BATTERIES-BASEL, 2022, 8 (11):
  • [35] Erratum to: “Silicon nanopowder as active material for hybrid electrodes of lithium-ion batteries”
    S. P. Kuksenko
    I. O. Kovalenko
    Russian Journal of Applied Chemistry, 2012, 85 : 533 - 533
  • [36] Understanding the Degradation of Silicon Electrodes for Lithium-Ion Batteries Using Acoustic Emission
    Rhodes, Kevin
    Dudney, Nancy
    Lara-Curzio, Edgar
    Daniel, Claus
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2010, 157 (12) : A1354 - A1360
  • [37] Neutron reflectometry studies on the lithiation of amorphous silicon electrodes in lithium-ion batteries
    Jerliu, B.
    Doerrer, L.
    Hueger, E.
    Borchardt, G.
    Steitz, R.
    Geckle, U.
    Oberst, V.
    Bruns, M.
    Schneider, O.
    Schmidt, H.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2013, 15 (20) : 7777 - 7784
  • [38] A composite electrode model for lithium-ion batteries with silicon/graphite negative electrodes
    Ai, Weilong
    Kirkaldy, Niall
    Jiang, Yang
    Offer, Gregory
    Wang, Huizhi
    Wu, Billy
    JOURNAL OF POWER SOURCES, 2022, 527
  • [39] Differentiating the Degradation Phenomena in Silicon-Graphite Electrodes for Lithium-Ion Batteries
    Wetjen, Morten
    Pritzl, Daniel
    Jung, Roland
    Solchenbach, Sophie
    Ghadimi, Reza
    Gasteiger, Hubert A.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2017, 164 (12) : A2840 - A2852
  • [40] Design of Electrodes and Electrolytes for Silicon-Based Anode Lithium-Ion Batteries
    Chen, Xiaoyi
    Wang, Bin
    Ye, Yaowen
    Liang, Jin
    Kong, Jie
    ENERGY & ENVIRONMENTAL MATERIALS, 2025, 8 (02)