Failure mechanisms of single-crystal silicon electrodes in lithium-ion batteries

被引:0
|
作者
Feifei Shi
Zhichao Song
Philip N. Ross
Gabor A. Somorjai
Robert O. Ritchie
Kyriakos Komvopoulos
机构
[1] University of California,Department of Mechanical Engineering
[2] Lawrence Berkeley National Laboratory,Materials Sciences Division
[3] University of California,Department of Chemistry
[4] University of California,Department of Materials Science and Engineering
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Long-term durability is a major obstacle limiting the widespread use of lithium-ion batteries in heavy-duty applications and others demanding extended lifetime. As one of the root causes of the degradation of battery performance, the electrode failure mechanisms are still unknown. In this paper, we reveal the fundamental fracture mechanisms of single-crystal silicon electrodes over extended lithiation/delithiation cycles, using electrochemical testing, microstructure characterization, fracture mechanics and finite element analysis. Anisotropic lithium invasion causes crack initiation perpendicular to the electrode surface, followed by growth through the electrode thickness. The low fracture energy of the lithiated/unlithiated silicon interface provides a weak microstructural path for crack deflection, accounting for the crack patterns and delamination observed after repeated cycling. On the basis of this physical understanding, we demonstrate how electrolyte additives can heal electrode cracks and provide strategies to enhance the fracture resistance in future lithium-ion batteries from surface chemical, electrochemical and material science perspectives.
引用
收藏
相关论文
共 50 条
  • [1] Failure mechanisms of single-crystal silicon electrodes in lithium-ion batteries
    Shi, Feifei
    Song, Zhichao
    Ross, Philip N.
    Somorjai, Gabor A.
    Ritchie, Robert O.
    Komvopoulos, Kyriakos
    NATURE COMMUNICATIONS, 2016, 7
  • [2] Link between anisotropic electrochemistry and surface transformations at single-crystal silicon electrodes: Implications for lithium-ion batteries
    Martin-Yerga, Daniel
    Bahri, Mounib
    Curd, Matthew E.
    Xu, Xiangdong
    Li, Weiqun
    Burnett, Timothy L.
    Withers, Philip J.
    Mehdi, B. Layla
    Browning, Nigel D.
    Unwin, Patrick R.
    NATURAL SCIENCES, 2023, 3 (02):
  • [3] Failure mechanism of bulk silicon anode electrodes for lithium-ion batteries
    Tao Li
    Juan-Yu Yang
    Shi-Gang Lu
    Han Wang
    Hai-Yang Ding
    Rare Metals, 2013, 32 (03) : 299 - 304
  • [4] Failure mechanism of bulk silicon anode electrodes for lithium-ion batteries
    Tao Li
    Juan-Yu Yang
    Shi-Gang Lu
    Han Wang
    Hai-Yang Ding
    Rare Metals, 2013, 32 : 299 - 304
  • [5] Failure mechanism of bulk silicon anode electrodes for lithium-ion batteries
    Li, Tao
    Yang, Juan-Yu
    Lu, Shi-Gang
    Wang, Han
    Ding, Hai-Yang
    RARE METALS, 2013, 32 (03) : 299 - 304
  • [6] A perspective on single-crystal layered oxide cathodes for lithium-ion batteries
    Langdon, Jayse
    Manthiram, Arumugam
    ENERGY STORAGE MATERIALS, 2021, 37 : 143 - 160
  • [7] Investigations on silicon composite electrodes for lithium-ion batteries
    Boovaragavan, Vijayasekaran
    Srinivasan, Venkat
    RECHARGEABLE LITHIUM AND LITHIUM ION BATTERIES, 2011, 33 (29): : 75 - 90
  • [8] Exploring the Properties and Potential of Single-crystal NCM 811 for Lithium-ion Batteries
    Lee, Yongseok
    Nam, Seunghoon
    CORROSION SCIENCE AND TECHNOLOGY-KOREA, 2023, 22 (01): : 36 - 43
  • [9] High-Voltage "Single-Crystal" Cathode Materials for Lithium-Ion Batteries
    Wang, Yinzhong
    Wang, Errui
    Zhang, Xu
    Yu, Haijun
    ENERGY & FUELS, 2021, 35 (03) : 1918 - 1932
  • [10] Probing the Reversibility of Silicon Monoxide Electrodes for Lithium-Ion Batteries
    Tan, Tian
    Lee, Pui-Kit
    Yu, Denis Y. W.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2018, 166 (03) : A5210 - A5214