Periodic monotone systems having one-dimensional dynamics

被引:0
|
作者
Luis A. Sanchez
机构
[1] Universidad Politécnica de Cartagena,Departamento de Matemática Aplicada y Estadística, Escuela Universitaria de Ingeniería Técnica Civil
来源
Archiv der Mathematik | 2010年 / 94卷
关键词
34D23; 34C12; Cooperative systems; Perodic solutions; Convergence;
D O I
暂无
中图分类号
学科分类号
摘要
We establish a criterion for a periodic monotone system to display a fully one dimensional dynamical behavior. This criterion is based on the existence of a Lyapunov function acting on differences of unordered solutions. The main consequence is the convergence of every solution to a periodic one.
引用
收藏
页码:235 / 243
页数:8
相关论文
共 50 条
  • [41] DYNAMICS OF UNHOMOGENEOUS EXCITATIONS IN THE ONE-DIMENSIONAL SPIN SYSTEMS
    BERIM, GO
    ZHURNAL EKSPERIMENTALNOI I TEORETICHESKOI FIZIKI, 1992, 102 (01): : 163 - 173
  • [42] Structure and dynamics of interacting Brownian particles in one-dimensional periodic substrates
    Herrera-Velarde, Salvador
    Castaneda-Priego, Ramon
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2007, 19 (22)
  • [43] One-dimensional lattice dynamics with periodic boundary conditions: An analog demonstration
    Eggert, JH
    AMERICAN JOURNAL OF PHYSICS, 1997, 65 (02) : 108 - 116
  • [44] One-dimensional lattice dynamics with periodic boundary conditions: An analog demonstration
    Eggert, J. H.
    American Journal of Physics, 65 (02):
  • [45] Dynamics of one-dimensional quantum many-body systems in time-periodic linear potentials
    Colcelli, A.
    Mussardo, G.
    Sierra, G.
    Trombettoni, A.
    PHYSICAL REVIEW A, 2020, 102 (03)
  • [46] Peak effect and dynamics of stripe- and pattern-forming systems on a periodic one-dimensional substrate
    Reichhardt, C.
    Reichhardt, C. J. O.
    PHYSICAL REVIEW E, 2024, 109 (05)
  • [47] Depinning dynamics of two-dimensional dusty plasmas on a one-dimensional periodic substrate
    Li, W.
    Wang, K.
    Reichhardt, C.
    Reichhardt, C. J. O.
    Murillo, M. S.
    Feng, Yan
    PHYSICAL REVIEW E, 2019, 100 (03)
  • [48] On the vibration of one-dimensional periodic structures
    Stephen, NG
    JOURNAL OF SOUND AND VIBRATION, 1999, 227 (05) : 1133 - 1142
  • [49] One-dimensional periodic Anderson model
    Gulacsi, M.
    MODERN PHYSICS LETTERS B, 2014, 28 (06):
  • [50] Crystallization in a One-Dimensional Periodic Landscape
    Manuel Friedrich
    Ulisse Stefanelli
    Journal of Statistical Physics, 2020, 179 : 485 - 501