Periodic monotone systems having one-dimensional dynamics

被引:0
|
作者
Luis A. Sanchez
机构
[1] Universidad Politécnica de Cartagena,Departamento de Matemática Aplicada y Estadística, Escuela Universitaria de Ingeniería Técnica Civil
来源
Archiv der Mathematik | 2010年 / 94卷
关键词
34D23; 34C12; Cooperative systems; Perodic solutions; Convergence;
D O I
暂无
中图分类号
学科分类号
摘要
We establish a criterion for a periodic monotone system to display a fully one dimensional dynamical behavior. This criterion is based on the existence of a Lyapunov function acting on differences of unordered solutions. The main consequence is the convergence of every solution to a periodic one.
引用
收藏
页码:235 / 243
页数:8
相关论文
共 50 条
  • [31] BOUNDARY RESISTANCE AND PSEUDOLOCALIZATION IN ONE-DIMENSIONAL PERIODIC-SYSTEMS
    RUBINSTEIN, M
    AZBEL, MY
    PHYSICAL REVIEW B, 1983, 27 (10): : 6484 - 6486
  • [32] SELF-SIMILARITIES IN ONE-DIMENSIONAL PERIODIC AND QUASIPERIODIC SYSTEMS
    ODAGAKI, T
    AOYAMA, H
    PHYSICAL REVIEW B, 1989, 39 (01): : 475 - 487
  • [33] Periodic oscillation of quantum diffusion in coupled one-dimensional systems
    Jiang, JinYi
    Lu, YanYan
    Wang, Chao
    Mosseri, Remy
    Zhong, JianXin
    SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2022, 65 (04)
  • [34] POLARON FORMATION IN ONE-DIMENSIONAL QUASI-PERIODIC SYSTEMS
    PNEVMATIKOS, S
    YANOVITSKII, O
    FRAGGIS, T
    ECONOMOU, EN
    PHYSICAL REVIEW LETTERS, 1992, 68 (15) : 2370 - 2371
  • [35] THEORY OF THE CASIMIR EFFECT IN ONE-DIMENSIONAL PERIODIC DIELECTRIC SYSTEMS
    Lambrecht, Astrid
    Marachevsky, Valery N.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2009, 24 (8-9): : 1789 - 1795
  • [36] Localization in One-dimensional Quasi-periodic Nonlinear Systems
    Jiansheng Geng
    Jiangong You
    Zhiyan Zhao
    Geometric and Functional Analysis, 2014, 24 : 116 - 158
  • [37] Dynamics of inhomogeneous excitations in the one-dimensional spin systems
    Berim, G.O.
    Zhurnal Eksperimental'noi i Teoreticheskoi Fiziki, 1992, 102 (01):
  • [38] CRITICAL-DYNAMICS OF ONE-DIMENSIONAL IRREVERSIBLE SYSTEMS
    MARTIN, O
    PHYSICA D, 1990, 45 (1-3): : 345 - 354
  • [39] EXACT RESULTS FOR DYNAMICS OF ONE-DIMENSIONAL SPIN SYSTEMS
    BRANDT, U
    JACOBY, K
    ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1976, 25 (02): : 181 - 187
  • [40] MICROSCOPIC CRITICAL DYNAMICS OF ONE-DIMENSIONAL SPIN SYSTEMS
    REITER, G
    PHYSICAL REVIEW B, 1979, 19 (03): : 1582 - 1597